File size: 5,896 Bytes
c59ebda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b5004f
 
 
 
 
 
2de650e
c59ebda
 
 
 
 
 
 
 
 
f61b4e0
 
c59ebda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8eb1e3
c59ebda
 
 
 
 
 
 
f34fa3a
c59ebda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8eb1e3
c59ebda
f8eb1e3
c59ebda
f8eb1e3
c59ebda
 
f8eb1e3
c59ebda
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import streamlit as st
from .services import TextGeneration
from tokenizers import Tokenizer
from functools import lru_cache

# @st.cache(allow_output_mutation=False, hash_funcs={Tokenizer: str})
@lru_cache(maxsize=1)
def load_text_generator():
    generator = TextGeneration()
    generator.load()
    return generator


generator = load_text_generator()

qa_prompt = """
            أجب عن السؤال التالي:
            """
qa_prompt_post = """ الجواب هو  """
qa_prompt_post_year = """ في سنة: """


def write():
    st.markdown(
        """
        <h1 style="text-align:left;">Arabic Language Generation</h1>
        """,
        unsafe_allow_html=True,
    )

    # Sidebar

    # Taken from https://huggingface.co/spaces/flax-community/spanish-gpt2/blob/main/app.py
    st.sidebar.subheader("Configurable parameters")

    model_name = st.sidebar.selectbox(
        "Model Selector",
        options=[
            "AraGPT2-Base",
            # "AraGPT2-Medium",
            # "Aragpt2-Large",
            "AraGPT2-Mega",
        ],
        index=0,
    )

    max_new_tokens = st.sidebar.number_input(
        "Maximum length",
        min_value=0,
        max_value=1024,
        value=100,
        help="The maximum length of the sequence to be generated.",
    )
    temp = st.sidebar.slider(
        "Temperature",
        value=1.0,
        min_value=0.1,
        max_value=100.0,
        help="The value used to module the next token probabilities.",
    )
    top_k = st.sidebar.number_input(
        "Top k",
        value=10,
        help="The number of highest probability vocabulary tokens to keep for top-k-filtering.",
    )
    top_p = st.sidebar.number_input(
        "Top p",
        value=0.95,
        help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.",
    )
    do_sample = st.sidebar.selectbox(
        "Sampling?",
        (True, False),
        help="Whether or not to use sampling; use greedy decoding otherwise.",
    )
    num_beams = st.sidebar.number_input(
        "Number of beams",
        min_value=1,
        max_value=10,
        value=3,
        help="The number of beams to use for beam search.",
    )
    repetition_penalty = st.sidebar.number_input(
        "Repetition Penalty",
        min_value=0.0,
        value=3.0,
        step=0.1,
        help="The parameter for repetition penalty. 1.0 means no penalty",
    )
    no_repeat_ngram_size = st.sidebar.number_input(
        "No Repeat N-Gram Size",
        min_value=0,
        value=3,
        help="If set to int > 0, all ngrams of that size can only occur once.",
    )

    st.write("#")

    col = st.columns(2)

    col[0].image("images/AraGPT2.png", width=200)

    st.markdown(
        """

        <h3 style="text-align:left;">AraGPT2 is GPT2 model trained from scratch on 77GB of Arabic text.</h3>
        <h4 style="text-align:left;"> More details in our <a href="https://github.com/aub-mind/arabert/tree/master/aragpt2">repo</a>.</h4>

        <p style="text-align:left;"><p>
        <p style="text-align:left;">Use the generation paramters on the sidebar to adjust generation quality.</p>
        <p style="text-align:right;"><p>
        """,
        unsafe_allow_html=True,
    )

    # col[0].write(
    #     "AraGPT2 is trained from screatch on 77GB of Arabic text. More details in our [repo](https://github.com/aub-mind/arabert/tree/master/aragpt2)."
    # )
    # st.write("## Generate Arabic Text")

    st.markdown(
        """
        <style>
        p, div, input, label, textarea{
        text-align: right;
        }
        </style>
        """,
        unsafe_allow_html=True,
    )

    prompt = st.text_area(
        "Prompt",
        "يحكى أن مزارعا مخادعا قام ببيع بئر الماء الموجود في أرضه لجاره مقابل مبلغ كبير من المال",
    )
    if st.button("Generate"):
        with st.spinner("Generating..."):
            generated_text = generator.generate(
                prompt=prompt,
                model_name=model_name,
                max_new_tokens=max_new_tokens,
                temperature=temp,
                top_k=top_k,
                top_p=top_p,
                repetition_penalty=repetition_penalty,
                do_sample=do_sample,
                num_beams=num_beams,
                no_repeat_ngram_size=no_repeat_ngram_size,
            )
            st.write(generated_text)

    st.markdown("---")
    st.subheader("")
    st.markdown(
        """
        <p style="text-align:left;"><p>
        <h2 style="text-align:left;">Zero-Shot Question Answering</h2>

        <p style="text-align:left;">Adjust the maximum length to closely match the expected output length. Setting the Sampling paramter to False is recommended</p>
        <p style="text-align:left;"><p>
        """,
        unsafe_allow_html=True,
    )

    question = st.text_input(
        "Question", "من كان رئيس ألمانيا النازية في الحرب العالمية الثانية ؟"
    )
    is_date = st.checkbox("Help the model: Is the answer a date?")
    if st.button("Answer"):

        prompt2 = qa_prompt + question + qa_prompt_post
        if is_date:
            prompt2 += qa_prompt_post_year
        else:
            prompt2 += " : "
        with st.spinner("Thinking..."):
            answer = generator.generate(
                prompt=prompt2,
                model_name=model_name,
                max_new_tokens=max_new_tokens,
                temperature=temp,
                top_k=top_k,
                top_p=top_p,
                repetition_penalty=repetition_penalty,
                do_sample=do_sample,
                num_beams=num_beams,
                no_repeat_ngram_size=no_repeat_ngram_size,
            )
            st.write(answer)