Spaces:
Running
Running
File size: 19,071 Bytes
0558cbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
import re
from contextlib import contextmanager
import numpy as np
import torch
import torch.nn.functional as F
from fuzzysearch import find_near_matches
from pyarabic import araby
from torch import nn
from transformers import AutoTokenizer, BertModel, BertPreTrainedModel, pipeline
from transformers.modeling_outputs import SequenceClassifierOutput
from .preprocess import ArabertPreprocessor, url_regexes, user_mention_regex
multiple_char_pattern = re.compile(r"(.)\1{2,}", re.DOTALL)
# ASAD-NEW_AraBERT_PREP-Balanced
class NewArabicPreprocessorBalanced(ArabertPreprocessor):
def __init__(
self,
model_name: str,
keep_emojis: bool = False,
remove_html_markup: bool = True,
replace_urls_emails_mentions: bool = True,
strip_tashkeel: bool = True,
strip_tatweel: bool = True,
insert_white_spaces: bool = True,
remove_non_digit_repetition: bool = True,
replace_slash_with_dash: bool = None,
map_hindi_numbers_to_arabic: bool = None,
apply_farasa_segmentation: bool = None,
):
if "UBC-NLP" in model_name or "CAMeL-Lab" in model_name:
keep_emojis = True
remove_non_digit_repetition = True
super().__init__(
model_name=model_name,
keep_emojis=keep_emojis,
remove_html_markup=remove_html_markup,
replace_urls_emails_mentions=replace_urls_emails_mentions,
strip_tashkeel=strip_tashkeel,
strip_tatweel=strip_tatweel,
insert_white_spaces=insert_white_spaces,
remove_non_digit_repetition=remove_non_digit_repetition,
replace_slash_with_dash=replace_slash_with_dash,
map_hindi_numbers_to_arabic=map_hindi_numbers_to_arabic,
apply_farasa_segmentation=apply_farasa_segmentation,
)
self.true_model_name = model_name
def preprocess(self, text):
if "UBC-NLP" in self.true_model_name:
return self.ubc_prep(text)
def ubc_prep(self, text):
text = re.sub("\s", " ", text)
text = text.replace("\\n", " ")
text = text.replace("\\r", " ")
text = araby.strip_tashkeel(text)
text = araby.strip_tatweel(text)
# replace all possible URLs
for reg in url_regexes:
text = re.sub(reg, " URL ", text)
text = re.sub("(URL\s*)+", " URL ", text)
# replace mentions with USER
text = re.sub(user_mention_regex, " USER ", text)
text = re.sub("(USER\s*)+", " USER ", text)
# replace hashtags with HASHTAG
# text = re.sub(r"#[\w\d]+", " HASH TAG ", text)
text = text.replace("#", " HASH ")
text = text.replace("_", " ")
text = " ".join(text.split())
# text = re.sub("\B\\[Uu]\w+", "", text)
text = text.replace("\\U0001f97a", "🥺")
text = text.replace("\\U0001f928", "🤨")
text = text.replace("\\U0001f9d8", "😀")
text = text.replace("\\U0001f975", "😥")
text = text.replace("\\U0001f92f", "😲")
text = text.replace("\\U0001f92d", "🤭")
text = text.replace("\\U0001f9d1", "😐")
text = text.replace("\\U000e0067", "")
text = text.replace("\\U000e006e", "")
text = text.replace("\\U0001f90d", "♥")
text = text.replace("\\U0001f973", "🎉")
text = text.replace("\\U0001fa79", "")
text = text.replace("\\U0001f92b", "🤐")
text = text.replace("\\U0001f9da", "🦋")
text = text.replace("\\U0001f90e", "♥")
text = text.replace("\\U0001f9d0", "🧐")
text = text.replace("\\U0001f9cf", "")
text = text.replace("\\U0001f92c", "😠")
text = text.replace("\\U0001f9f8", "😸")
text = text.replace("\\U0001f9b6", "💩")
text = text.replace("\\U0001f932", "🤲")
text = text.replace("\\U0001f9e1", "🧡")
text = text.replace("\\U0001f974", "☹")
text = text.replace("\\U0001f91f", "")
text = text.replace("\\U0001f9fb", "💩")
text = text.replace("\\U0001f92a", "🤪")
text = text.replace("\\U0001f9fc", "")
text = text.replace("\\U000e0065", "")
text = text.replace("\\U0001f92e", "💩")
text = text.replace("\\U000e007f", "")
text = text.replace("\\U0001f970", "🥰")
text = text.replace("\\U0001f929", "🤩")
text = text.replace("\\U0001f6f9", "")
text = text.replace("🤍", "♥")
text = text.replace("🦠", "😷")
text = text.replace("🤢", "مقرف")
text = text.replace("🤮", "مقرف")
text = text.replace("🕠", "⌚")
text = text.replace("🤬", "😠")
text = text.replace("🤧", "😷")
text = text.replace("🥳", "🎉")
text = text.replace("🥵", "🔥")
text = text.replace("🥴", "☹")
text = text.replace("🤫", "🤐")
text = text.replace("🤥", "كذاب")
text = text.replace("\\u200d", " ")
text = text.replace("u200d", " ")
text = text.replace("\\u200c", " ")
text = text.replace("u200c", " ")
text = text.replace('"', "'")
text = text.replace("\\xa0", "")
text = text.replace("\\u2066", " ")
text = re.sub("\B\\\[Uu]\w+", "", text)
text = super(NewArabicPreprocessorBalanced, self).preprocess(text)
text = " ".join(text.split())
return text
"""CNNMarbertArabicPreprocessor"""
# ASAD-CNN_MARBERT
class CNNMarbertArabicPreprocessor(ArabertPreprocessor):
def __init__(
self,
model_name,
keep_emojis=False,
remove_html_markup=True,
replace_urls_emails_mentions=True,
remove_elongations=True,
):
if "UBC-NLP" in model_name or "CAMeL-Lab" in model_name:
keep_emojis = True
remove_elongations = False
super().__init__(
model_name,
keep_emojis,
remove_html_markup,
replace_urls_emails_mentions,
remove_elongations,
)
self.true_model_name = model_name
def preprocess(self, text):
if "UBC-NLP" in self.true_model_name:
return self.ubc_prep(text)
def ubc_prep(self, text):
text = re.sub("\s", " ", text)
text = text.replace("\\n", " ")
text = araby.strip_tashkeel(text)
text = araby.strip_tatweel(text)
# replace all possible URLs
for reg in url_regexes:
text = re.sub(reg, " URL ", text)
text = re.sub("(URL\s*)+", " URL ", text)
# replace mentions with USER
text = re.sub(user_mention_regex, " USER ", text)
text = re.sub("(USER\s*)+", " USER ", text)
# replace hashtags with HASHTAG
# text = re.sub(r"#[\w\d]+", " HASH TAG ", text)
text = text.replace("#", " HASH ")
text = text.replace("_", " ")
text = " ".join(text.split())
text = super(CNNMarbertArabicPreprocessor, self).preprocess(text)
text = text.replace("\u200d", " ")
text = text.replace("u200d", " ")
text = text.replace("\u200c", " ")
text = text.replace("u200c", " ")
text = text.replace('"', "'")
# text = re.sub('[\d\.]+', ' NUM ', text)
# text = re.sub('(NUM\s*)+', ' NUM ', text)
text = multiple_char_pattern.sub(r"\1\1", text)
text = " ".join(text.split())
return text
"""Trial5ArabicPreprocessor"""
class Trial5ArabicPreprocessor(ArabertPreprocessor):
def __init__(
self,
model_name,
keep_emojis=False,
remove_html_markup=True,
replace_urls_emails_mentions=True,
):
if "UBC-NLP" in model_name:
keep_emojis = True
super().__init__(
model_name, keep_emojis, remove_html_markup, replace_urls_emails_mentions
)
self.true_model_name = model_name
def preprocess(self, text):
if "UBC-NLP" in self.true_model_name:
return self.ubc_prep(text)
def ubc_prep(self, text):
text = re.sub("\s", " ", text)
text = text.replace("\\n", " ")
text = araby.strip_tashkeel(text)
text = araby.strip_tatweel(text)
# replace all possible URLs
for reg in url_regexes:
text = re.sub(reg, " URL ", text)
# replace mentions with USER
text = re.sub(user_mention_regex, " USER ", text)
# replace hashtags with HASHTAG
# text = re.sub(r"#[\w\d]+", " HASH TAG ", text)
text = text.replace("#", " HASH TAG ")
text = text.replace("_", " ")
text = " ".join(text.split())
text = super(Trial5ArabicPreprocessor, self).preprocess(text)
# text = text.replace("السلام عليكم"," ")
# text = text.replace(find_near_matches("السلام عليكم",text,max_deletions=3,max_l_dist=3)[0].matched," ")
return text
"""SarcasmArabicPreprocessor"""
class SarcasmArabicPreprocessor(ArabertPreprocessor):
def __init__(
self,
model_name,
keep_emojis=False,
remove_html_markup=True,
replace_urls_emails_mentions=True,
):
if "UBC-NLP" in model_name:
keep_emojis = True
super().__init__(
model_name, keep_emojis, remove_html_markup, replace_urls_emails_mentions
)
self.true_model_name = model_name
def preprocess(self, text):
if "UBC-NLP" in self.true_model_name:
return self.ubc_prep(text)
else:
return super(SarcasmArabicPreprocessor, self).preprocess(text)
def ubc_prep(self, text):
text = re.sub("\s", " ", text)
text = text.replace("\\n", " ")
text = araby.strip_tashkeel(text)
text = araby.strip_tatweel(text)
# replace all possible URLs
for reg in url_regexes:
text = re.sub(reg, " URL ", text)
# replace mentions with USER
text = re.sub(user_mention_regex, " USER ", text)
# replace hashtags with HASHTAG
# text = re.sub(r"#[\w\d]+", " HASH TAG ", text)
text = text.replace("#", " HASH TAG ")
text = text.replace("_", " ")
text = text.replace('"', " ")
text = " ".join(text.split())
text = super(SarcasmArabicPreprocessor, self).preprocess(text)
return text
"""NoAOAArabicPreprocessor"""
class NoAOAArabicPreprocessor(ArabertPreprocessor):
def __init__(
self,
model_name,
keep_emojis=False,
remove_html_markup=True,
replace_urls_emails_mentions=True,
):
if "UBC-NLP" in model_name:
keep_emojis = True
super().__init__(
model_name, keep_emojis, remove_html_markup, replace_urls_emails_mentions
)
self.true_model_name = model_name
def preprocess(self, text):
if "UBC-NLP" in self.true_model_name:
return self.ubc_prep(text)
else:
return super(NoAOAArabicPreprocessor, self).preprocess(text)
def ubc_prep(self, text):
text = re.sub("\s", " ", text)
text = text.replace("\\n", " ")
text = araby.strip_tashkeel(text)
text = araby.strip_tatweel(text)
# replace all possible URLs
for reg in url_regexes:
text = re.sub(reg, " URL ", text)
# replace mentions with USER
text = re.sub(user_mention_regex, " USER ", text)
# replace hashtags with HASHTAG
# text = re.sub(r"#[\w\d]+", " HASH TAG ", text)
text = text.replace("#", " HASH TAG ")
text = text.replace("_", " ")
text = " ".join(text.split())
text = super(NoAOAArabicPreprocessor, self).preprocess(text)
text = text.replace("السلام عليكم", " ")
text = text.replace("ورحمة الله وبركاته", " ")
matched = find_near_matches("السلام عليكم", text, max_deletions=3, max_l_dist=3)
if len(matched) > 0:
text = text.replace(matched[0].matched, " ")
matched = find_near_matches(
"ورحمة الله وبركاته", text, max_deletions=3, max_l_dist=3
)
if len(matched) > 0:
text = text.replace(matched[0].matched, " ")
return text
class CnnBertForSequenceClassification(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.bert = BertModel(config)
filter_sizes = [1, 2, 3, 4, 5]
num_filters = 32
self.convs1 = nn.ModuleList(
[nn.Conv2d(4, num_filters, (K, config.hidden_size)) for K in filter_sizes]
)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(len(filter_sizes) * num_filters, config.num_labels)
self.init_weights()
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
x = outputs[2][-4:]
x = torch.stack(x, dim=1)
x = [F.relu(conv(x)).squeeze(3) for conv in self.convs1]
x = [F.max_pool1d(i, i.size(2)).squeeze(2) for i in x]
x = torch.cat(x, 1)
x = self.dropout(x)
logits = self.classifier(x)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (
labels.dtype == torch.long or labels.dtype == torch.int
):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = nn.MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = nn.BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=None,
attentions=outputs.attentions,
)
class CNNTextClassificationPipeline:
def __init__(self, model_path, device, return_all_scores=False):
self.model_path = model_path
self.model = CnnBertForSequenceClassification.from_pretrained(self.model_path)
# Special handling
self.device = torch.device("cpu" if device < 0 else f"cuda:{device}")
if self.device.type == "cuda":
self.model = self.model.to(self.device)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.return_all_scores = return_all_scores
@contextmanager
def device_placement(self):
"""
Context Manager allowing tensor allocation on the user-specified device in framework agnostic way.
Returns:
Context manager
Examples::
# Explicitly ask for tensor allocation on CUDA device :0
pipe = pipeline(..., device=0)
with pipe.device_placement():
# Every framework specific tensor allocation will be done on the request device
output = pipe(...)
"""
if self.device.type == "cuda":
torch.cuda.set_device(self.device)
yield
def ensure_tensor_on_device(self, **inputs):
"""
Ensure PyTorch tensors are on the specified device.
Args:
inputs (keyword arguments that should be :obj:`torch.Tensor`): The tensors to place on :obj:`self.device`.
Return:
:obj:`Dict[str, torch.Tensor]`: The same as :obj:`inputs` but on the proper device.
"""
return {
name: tensor.to(self.device) if isinstance(tensor, torch.Tensor) else tensor
for name, tensor in inputs.items()
}
def __call__(self, text):
"""
Classify the text(s) given as inputs.
Args:
args (:obj:`str` or :obj:`List[str]`):
One or several texts (or one list of prompts) to classify.
Return:
A list or a list of list of :obj:`dict`: Each result comes as list of dictionaries with the following keys:
- **label** (:obj:`str`) -- The label predicted.
- **score** (:obj:`float`) -- The corresponding probability.
If ``self.return_all_scores=True``, one such dictionary is returned per label.
"""
# outputs = super().__call__(*args, **kwargs)
inputs = self.tokenizer.batch_encode_plus(
text,
add_special_tokens=True,
max_length=64,
padding=True,
truncation="longest_first",
return_tensors="pt",
)
with torch.no_grad():
inputs = self.ensure_tensor_on_device(**inputs)
predictions = self.model(**inputs)[0].cpu()
predictions = predictions.numpy()
if self.model.config.num_labels == 1:
scores = 1.0 / (1.0 + np.exp(-predictions))
else:
scores = np.exp(predictions) / np.exp(predictions).sum(-1, keepdims=True)
if self.return_all_scores:
return [
[
{"label": self.model.config.id2label[i], "score": score.item()}
for i, score in enumerate(item)
]
for item in scores
]
else:
return [
{"label": self.inv_label_map[item.argmax()], "score": item.max().item()}
for item in scores
]
|