Spaces:
Running
Running
import streamlit as st | |
import awesome_streamlit as ast | |
from .preprocess import ( | |
ArabertPreprocessor, | |
white_spaced_back_quotation_regex, | |
white_spaced_double_quotation_regex, | |
white_spaced_em_dash, | |
white_spaced_single_quotation_regex, | |
left_and_right_spaced_chars, | |
left_spaced_chars, | |
right_spaced_chars, | |
) | |
import re | |
MODELS_to_SELECT = [ | |
"None", | |
"bert-base-arabertv01", | |
"bert-base-arabert", | |
"bert-base-arabertv02", | |
"bert-base-arabertv2", | |
"bert-large-arabertv02", | |
"bert-large-arabertv2", | |
"araelectra-base", | |
"araelectra-base-discriminator", | |
"araelectra-base-generator", | |
"araelectra-base-artydiqa", | |
"aragpt2-base", | |
"aragpt2-medium", | |
"aragpt2-large", | |
"aragpt2-mega", | |
] | |
def unpreprocess(text: str) -> str: | |
"""Re-formats the text to a classic format where punctuations, brackets, parenthesis are not seperated by whitespaces. | |
The objective is to make the generated text of any model appear natural and not preprocessed. | |
Args: | |
text (:obj:`str`): input text to be un-preprocessed | |
desegment (:obj:`bool`, optional): [whether or not to remove farasa pre-segmentation before].. | |
Returns: | |
str: The unpreprocessed (and possibly Farasa-desegmented) text. | |
""" | |
text = desegment(text) | |
# removes the spaces around quotation marks ex: i " ate " an apple --> i "ate" an apple | |
# https://stackoverflow.com/a/53436792/5381220 | |
text = re.sub(white_spaced_double_quotation_regex, '"' + r"\1" + '"', text) | |
text = re.sub(white_spaced_single_quotation_regex, "'" + r"\1" + "'", text) | |
text = re.sub(white_spaced_back_quotation_regex, "\`" + r"\1" + "\`", text) | |
text = re.sub(white_spaced_back_quotation_regex, "\—" + r"\1" + "\—", text) | |
# during generation, sometimes the models don't put a space after the dot, this handles it | |
text = text.replace(".", " . ") | |
text = " ".join(text.split()) | |
# handle decimals | |
text = re.sub(r"(\d+) \. (\d+)", r"\1.\2", text) | |
text = re.sub(r"(\d+) \, (\d+)", r"\1,\2", text) | |
text = re.sub(left_and_right_spaced_chars, r"\1", text) | |
text = re.sub(left_spaced_chars, r"\1", text) | |
text = re.sub(right_spaced_chars, r"\1", text) | |
return text | |
def desegment(text: str) -> str: | |
""" | |
Use this function if sentence tokenization was done using | |
`from arabert.preprocess_arabert import preprocess` with Farasa enabled | |
AraBERT segmentation using Farasa adds a space after the '+' for prefixes, | |
and after before the '+' for suffixes | |
Example: | |
>>> desegment('ال+ دراس +ات') | |
الدراسات | |
""" | |
text = text.replace("+ ", "+") | |
text = text.replace(" +", "+") | |
text = " ".join([_desegmentword(word) for word in text.split(" ")]) | |
return text | |
def _desegmentword(orig_word: str) -> str: | |
""" | |
Word segmentor that takes a Farasa Segmented Word and removes the '+' signs | |
Example: | |
>>> _desegmentword("ال+يومي+ة") | |
اليومية | |
""" | |
word = orig_word.replace("ل+ال+", "لل") | |
if "ال+ال" not in orig_word: | |
word = word.replace("ل+ال", "لل") | |
word = word.replace("+", "") | |
word = word.replace("للل", "لل") | |
return word | |
def write(): | |
_, col1, _ = st.beta_columns(3) | |
with col1: | |
col1.title("Arabic Text Pre-Processor") | |
st.markdown( | |
""" | |
<style> | |
p, div, input, label { | |
text-align: right; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True, | |
) | |
input_text = st.text_input( | |
"Text to Pre-Process", | |
value="ولن نبالغ إذا قلنا: إن 'هاتف' أو 'كمبيوتر المكتب' في زمننا هذا ضروري", | |
) | |
st.sidebar.title("Model Selector") | |
model_selector = st.sidebar.selectbox( | |
"""Select None to enable further filters""", options=MODELS_to_SELECT, index=3 | |
) | |
if model_selector == "None": | |
keep_emojis = st.sidebar.checkbox("Keep emojis", False) | |
remove_html_markup = st.sidebar.checkbox("Remove html markup", True) | |
strip_tashkeel = st.sidebar.checkbox("Strip tashkeel", True) | |
replace_urls_emails_mentions = st.sidebar.checkbox( | |
"Replace urls and emails", True | |
) | |
strip_tatweel = st.sidebar.checkbox("Strip tatweel", True) | |
insert_white_spaces = st.sidebar.checkbox("Insert white spaces", True) | |
remove_non_digit_repetition = st.sidebar.checkbox( | |
"Remove non-digit repetition", True | |
) | |
replace_slash_with_dash = st.sidebar.checkbox("Replace slash with dash", None) | |
map_hindi_numbers_to_arabic = st.sidebar.checkbox( | |
"Map hindi numbers to arabic", None | |
) | |
apply_farasa_segmentation = st.sidebar.checkbox( | |
"Apply farasa segmentation", None | |
) | |
run_preprocessor = st.button("Run Pre-Processor") | |
prep_text = None | |
if run_preprocessor: | |
if model_selector == "None": | |
arabert_preprocessor = ArabertPreprocessor( | |
model_selector, | |
keep_emojis, | |
remove_html_markup, | |
replace_urls_emails_mentions, | |
strip_tashkeel, | |
strip_tatweel, | |
insert_white_spaces, | |
remove_non_digit_repetition, | |
replace_slash_with_dash, | |
map_hindi_numbers_to_arabic, | |
apply_farasa_segmentation, | |
) | |
else: | |
arabert_preprocessor = ArabertPreprocessor(model_name=model_selector) | |
prep_text = arabert_preprocessor._preprocess_v3(input_text) | |
st.write(prep_text) | |
st.write("-----") | |
input_text_unprep = st.text_input( | |
"Text to Undo the Pre-Processing", | |
value=prep_text | |
if prep_text | |
else "و+ لن نبالغ إذا قل +نا : إن ' هاتف ' أو ' كمبيوتر ال+ مكتب ' في زمن +نا هذا ضروري", | |
) | |
run_unpreprocessor = st.button("Run Un-Pre-Processor") | |
if run_unpreprocessor: | |
st.write(unpreprocess(input_text_unprep)) | |