Spaces:
Running
Running
wissamantoun
commited on
Commit
•
90afd57
1
Parent(s):
c64d018
added sarcasm and qa with logging
Browse files- app.py +7 -1
- backend/home.py +2 -1
- backend/qa.py +47 -0
- backend/qa_utils.py +163 -0
- backend/sarcasm.py +26 -0
- backend/services.py +202 -43
- backend/utils.py +22 -0
- images/is2alni_logo.png +0 -0
- requirements.txt +5 -1
app.py
CHANGED
@@ -1,22 +1,28 @@
|
|
1 |
import awesome_streamlit as ast
|
2 |
import streamlit as st
|
3 |
|
4 |
-
from backend.utils import get_current_ram_usage
|
5 |
|
6 |
import backend.aragpt
|
7 |
import backend.home
|
8 |
import backend.processor
|
9 |
import backend.sa
|
|
|
|
|
10 |
|
11 |
st.set_page_config(
|
12 |
page_title="TEST", page_icon="📖", initial_sidebar_state="expanded", layout="wide"
|
13 |
)
|
14 |
|
|
|
|
|
15 |
PAGES = {
|
16 |
"Home": backend.home,
|
17 |
"Arabic Text Preprocessor": backend.processor,
|
18 |
"Arabic Language Generation": backend.aragpt,
|
19 |
"Arabic Sentiment Analysis": backend.sa,
|
|
|
|
|
20 |
}
|
21 |
|
22 |
|
|
|
1 |
import awesome_streamlit as ast
|
2 |
import streamlit as st
|
3 |
|
4 |
+
from backend.utils import get_current_ram_usage, ga
|
5 |
|
6 |
import backend.aragpt
|
7 |
import backend.home
|
8 |
import backend.processor
|
9 |
import backend.sa
|
10 |
+
import backend.qa
|
11 |
+
import backend.sarcasm
|
12 |
|
13 |
st.set_page_config(
|
14 |
page_title="TEST", page_icon="📖", initial_sidebar_state="expanded", layout="wide"
|
15 |
)
|
16 |
|
17 |
+
ga(st.__file__)
|
18 |
+
|
19 |
PAGES = {
|
20 |
"Home": backend.home,
|
21 |
"Arabic Text Preprocessor": backend.processor,
|
22 |
"Arabic Language Generation": backend.aragpt,
|
23 |
"Arabic Sentiment Analysis": backend.sa,
|
24 |
+
"Arabic Sarcasm Detection": backend.sarcasm,
|
25 |
+
"Arabic Question Answering": backend.qa,
|
26 |
}
|
27 |
|
28 |
|
backend/home.py
CHANGED
@@ -14,7 +14,8 @@ def write():
|
|
14 |
- Arabic Text Preprocessor: Test how text imput is treated by our preprocessor
|
15 |
- Arabic Language Generation: Generate Arabic text using our AraGPT2 language models
|
16 |
- Arabic Sentiment Analysis: Test the senitment analysis model that won the [Arabic Senitment Analysis competition @ KAUST](https://www.kaggle.com/c/arabic-sentiment-analysis-2021-kaust)
|
17 |
-
- Arabic
|
|
|
18 |
"""
|
19 |
)
|
20 |
st.markdown("#")
|
|
|
14 |
- Arabic Text Preprocessor: Test how text imput is treated by our preprocessor
|
15 |
- Arabic Language Generation: Generate Arabic text using our AraGPT2 language models
|
16 |
- Arabic Sentiment Analysis: Test the senitment analysis model that won the [Arabic Senitment Analysis competition @ KAUST](https://www.kaggle.com/c/arabic-sentiment-analysis-2021-kaust)
|
17 |
+
- Arabic Sarcasm Detection: Test MARBERT trained for sarcasm detection
|
18 |
+
- Arabic Question Answering: Test our AraELECTRA QA capabilities
|
19 |
"""
|
20 |
)
|
21 |
st.markdown("#")
|
backend/qa.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
from qa_utils import annotate_answer, get_qa_answers
|
4 |
+
|
5 |
+
_, col1, _ = st.beta_columns(3)
|
6 |
+
|
7 |
+
with col1:
|
8 |
+
st.image("is2alni_logo.png", width=200)
|
9 |
+
st.title("إسألني أي شيء")
|
10 |
+
|
11 |
+
st.markdown(
|
12 |
+
"""
|
13 |
+
<style>
|
14 |
+
p, div, input, label {
|
15 |
+
text-align: right;
|
16 |
+
}
|
17 |
+
</style>
|
18 |
+
""",
|
19 |
+
unsafe_allow_html=True,
|
20 |
+
)
|
21 |
+
|
22 |
+
st.sidebar.header("Info")
|
23 |
+
st.sidebar.image("AraELECTRA.png", width=150)
|
24 |
+
st.sidebar.write("Powered by [AraELECTRA](https://github.com/aub-mind/arabert)")
|
25 |
+
|
26 |
+
st.sidebar.write("\n")
|
27 |
+
n_answers = st.sidebar.slider(
|
28 |
+
"Max. number of answers", min_value=1, max_value=10, value=2, step=1
|
29 |
+
)
|
30 |
+
|
31 |
+
question = st.text_input("", value="من هو جو بايدن؟")
|
32 |
+
if "؟" not in question:
|
33 |
+
question += "؟"
|
34 |
+
|
35 |
+
run_query = st.button("أجب")
|
36 |
+
if run_query:
|
37 |
+
# https://discuss.streamlit.io/t/showing-a-gif-while-st-spinner-runs/5084
|
38 |
+
with st.spinner("... جاري البحث "):
|
39 |
+
results_dict = get_qa_answers(question)
|
40 |
+
|
41 |
+
if len(results_dict) > 0:
|
42 |
+
st.write("## :الأجابات هي")
|
43 |
+
for result in results_dict["results"][:n_answers]:
|
44 |
+
annotate_answer(result)
|
45 |
+
f"[**المصدر**](<{result['link']}>)"
|
46 |
+
else:
|
47 |
+
st.write("## 😞 ليس لدي جواب")
|
backend/qa_utils.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit.components.v1
|
2 |
+
|
3 |
+
from htbuilder import HtmlElement, div, span, styles
|
4 |
+
from htbuilder.units import px, rem, em
|
5 |
+
|
6 |
+
|
7 |
+
def annotation(body, label="", background="#ddd", color="#333", **style):
|
8 |
+
"""Build an HtmlElement span object with the given body and annotation label.
|
9 |
+
|
10 |
+
The end result will look something like this:
|
11 |
+
|
12 |
+
[body | label]
|
13 |
+
|
14 |
+
Parameters
|
15 |
+
----------
|
16 |
+
body : string
|
17 |
+
The string to put in the "body" part of the annotation.
|
18 |
+
label : string
|
19 |
+
The string to put in the "label" part of the annotation.
|
20 |
+
background : string
|
21 |
+
The color to use for the background "chip" containing this annotation.
|
22 |
+
color : string
|
23 |
+
The color to use for the body and label text.
|
24 |
+
**style : dict
|
25 |
+
Any CSS you want to use to customize the containing "chip".
|
26 |
+
|
27 |
+
Examples
|
28 |
+
--------
|
29 |
+
|
30 |
+
Produce a simple annotation with default colors:
|
31 |
+
|
32 |
+
>>> annotation("apple", "fruit")
|
33 |
+
|
34 |
+
Produce an annotation with custom colors:
|
35 |
+
|
36 |
+
>>> annotation("apple", "fruit", background="#FF0", color="black")
|
37 |
+
|
38 |
+
Produce an annotation with crazy CSS:
|
39 |
+
|
40 |
+
>>> annotation("apple", "fruit", background="#FF0", border="1px dashed red")
|
41 |
+
|
42 |
+
"""
|
43 |
+
|
44 |
+
if "font_family" not in style:
|
45 |
+
style["font_family"] = "sans-serif"
|
46 |
+
|
47 |
+
return span(
|
48 |
+
style=styles(
|
49 |
+
background=background,
|
50 |
+
border_radius=rem(0.33),
|
51 |
+
color=color,
|
52 |
+
padding=(rem(0.17), rem(0.67)),
|
53 |
+
display="inline-flex",
|
54 |
+
justify_content="center",
|
55 |
+
align_items="center",
|
56 |
+
**style,
|
57 |
+
)
|
58 |
+
)(
|
59 |
+
body,
|
60 |
+
span(
|
61 |
+
style=styles(
|
62 |
+
color=color,
|
63 |
+
font_size=em(0.67),
|
64 |
+
opacity=0.5,
|
65 |
+
padding_left=rem(0.5),
|
66 |
+
text_transform="uppercase",
|
67 |
+
margin_bottom=px(-2),
|
68 |
+
)
|
69 |
+
)(label),
|
70 |
+
)
|
71 |
+
|
72 |
+
|
73 |
+
def annotated_text(*args, **kwargs):
|
74 |
+
"""Writes test with annotations into your Streamlit app.
|
75 |
+
|
76 |
+
Parameters
|
77 |
+
----------
|
78 |
+
*args : str, tuple or htbuilder.HtmlElement
|
79 |
+
Arguments can be:
|
80 |
+
- strings, to draw the string as-is on the screen.
|
81 |
+
- tuples of the form (main_text, annotation_text, background, color) where
|
82 |
+
background and foreground colors are optional and should be an CSS-valid string such as
|
83 |
+
"#aabbcc" or "rgb(10, 20, 30)"
|
84 |
+
- HtmlElement objects in case you want to customize the annotations further. In particular,
|
85 |
+
you can import the `annotation()` function from this module to easily produce annotations
|
86 |
+
whose CSS you can customize via keyword arguments.
|
87 |
+
|
88 |
+
Examples
|
89 |
+
--------
|
90 |
+
|
91 |
+
>>> annotated_text(
|
92 |
+
... "This ",
|
93 |
+
... ("is", "verb", "#8ef"),
|
94 |
+
... " some ",
|
95 |
+
... ("annotated", "adj", "#faa"),
|
96 |
+
... ("text", "noun", "#afa"),
|
97 |
+
... " for those of ",
|
98 |
+
... ("you", "pronoun", "#fea"),
|
99 |
+
... " who ",
|
100 |
+
... ("like", "verb", "#8ef"),
|
101 |
+
... " this sort of ",
|
102 |
+
... ("thing", "noun", "#afa"),
|
103 |
+
... )
|
104 |
+
|
105 |
+
>>> annotated_text(
|
106 |
+
... "Hello ",
|
107 |
+
... annotation("world!", "noun", color="#8ef", border="1px dashed red"),
|
108 |
+
... )
|
109 |
+
|
110 |
+
"""
|
111 |
+
out = div(
|
112 |
+
style=styles(
|
113 |
+
font_family="sans-serif",
|
114 |
+
line_height="1.45",
|
115 |
+
font_size=px(16),
|
116 |
+
text_align="right",
|
117 |
+
)
|
118 |
+
)
|
119 |
+
|
120 |
+
for arg in args:
|
121 |
+
if isinstance(arg, str):
|
122 |
+
out(arg)
|
123 |
+
|
124 |
+
elif isinstance(arg, HtmlElement):
|
125 |
+
out(arg)
|
126 |
+
|
127 |
+
elif isinstance(arg, tuple):
|
128 |
+
out(annotation(*arg))
|
129 |
+
|
130 |
+
else:
|
131 |
+
raise Exception("Oh noes!")
|
132 |
+
|
133 |
+
streamlit.components.v1.html(str(out), **kwargs)
|
134 |
+
|
135 |
+
|
136 |
+
def shorten_text(text, n, reverse=False):
|
137 |
+
if text.isspace() or text == "":
|
138 |
+
return text
|
139 |
+
if reverse:
|
140 |
+
text = text[::-1]
|
141 |
+
words = iter(text.split())
|
142 |
+
lines, current = [], next(words)
|
143 |
+
for word in words:
|
144 |
+
if len(current) + 1 + len(word) > n:
|
145 |
+
break
|
146 |
+
else:
|
147 |
+
current += " " + word
|
148 |
+
lines.append(current)
|
149 |
+
if reverse:
|
150 |
+
return lines[0][::-1]
|
151 |
+
return lines[0]
|
152 |
+
|
153 |
+
|
154 |
+
def annotate_answer(result):
|
155 |
+
annotated_text(
|
156 |
+
shorten_text(
|
157 |
+
result["original"][: result["new_start"]],
|
158 |
+
500,
|
159 |
+
reverse=True,
|
160 |
+
),
|
161 |
+
(result["new_answer"], "جواب", "#8ef"),
|
162 |
+
shorten_text(result["original"][result["new_end"] :], 500) + " ...... إلخ",
|
163 |
+
)
|
backend/sarcasm.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from .sa import predictor
|
3 |
+
|
4 |
+
|
5 |
+
def write():
|
6 |
+
st.markdown(
|
7 |
+
"""
|
8 |
+
# Arabic Sarcasm Detection
|
9 |
+
|
10 |
+
This is a simple sarcasm detection app that uses the [MARBERT](https://huggingface.co/UBC-NLP/MARBERT) model trained on [ArSarcasm](https://github.com/iabufarha/ArSarcasm)
|
11 |
+
"""
|
12 |
+
)
|
13 |
+
|
14 |
+
input_text = st.text_input(
|
15 |
+
"Enter your text here:",
|
16 |
+
)
|
17 |
+
if st.button("Predict"):
|
18 |
+
with st.spinner("Predicting..."):
|
19 |
+
prediction, scores = predictor.get_preds_from_sarcasm([input_text])
|
20 |
+
st.write(f"Result: {prediction[0]}")
|
21 |
+
detailed_score = {
|
22 |
+
"Sarcastic": scores[0][0],
|
23 |
+
"Not_Sarcastic": scores[0][1],
|
24 |
+
}
|
25 |
+
st.write("All scores:")
|
26 |
+
st.write(detailed_score)
|
backend/services.py
CHANGED
@@ -13,6 +13,17 @@ from .preprocess import ArabertPreprocessor
|
|
13 |
from .sa_utils import *
|
14 |
from .utils import download_models, softmax
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
logger = logging.getLogger(__name__)
|
17 |
# Taken and Modified from https://huggingface.co/spaces/flax-community/chef-transformer/blob/main/app.py
|
18 |
class TextGeneration:
|
@@ -72,6 +83,7 @@ class TextGeneration:
|
|
72 |
do_sample: bool,
|
73 |
num_beams: int,
|
74 |
):
|
|
|
75 |
prompt = self.preprocessor.preprocess(prompt)
|
76 |
return_full_text = False
|
77 |
return_text = True
|
@@ -127,6 +139,9 @@ class TextGeneration:
|
|
127 |
return "Something happened 🤷♂️!!"
|
128 |
else:
|
129 |
generated_text = generated_text[0]["generated_text"]
|
|
|
|
|
|
|
130 |
return self.preprocessor.unpreprocess(generated_text)
|
131 |
|
132 |
def query(self, payload, model_name):
|
@@ -219,7 +234,7 @@ class SentimentAnalyzer:
|
|
219 |
preds_df = pd.DataFrame([])
|
220 |
for i in range(0, 5):
|
221 |
preds = []
|
222 |
-
for s in
|
223 |
preds.extend(self.pipelines["sar_trial10"][i](s))
|
224 |
preds_df[f"model_{i}"] = preds
|
225 |
|
@@ -245,55 +260,63 @@ class SentimentAnalyzer:
|
|
245 |
return final_labels, final_scores
|
246 |
|
247 |
def get_preds_from_a_model(self, texts: List[str], model_name):
|
|
|
|
|
248 |
|
249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
labeled_prep_texts.append(sarcastic_map[l] + " [SEP] " + t)
|
258 |
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
for
|
263 |
-
|
264 |
-
|
|
|
|
|
|
|
|
|
|
|
265 |
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
for id, row in preds_df.iterrows():
|
270 |
-
pos_total = 0
|
271 |
-
neg_total = 0
|
272 |
-
neu_total = 0
|
273 |
-
for pred in row[2:]:
|
274 |
-
pos_total += pred[0]["score"]
|
275 |
-
neu_total += pred[1]["score"]
|
276 |
-
neg_total += pred[2]["score"]
|
277 |
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
)
|
288 |
else:
|
289 |
-
|
290 |
-
self.pipelines[model_name][0].model.config.id2label[
|
291 |
-
np.argmax([pos_avg, neu_avg, neg_avg])
|
292 |
-
]
|
293 |
-
)
|
294 |
-
final_scores.append(np.max([pos_avg, neu_avg, neg_avg]))
|
295 |
-
final_scores_list.append((pos_avg, neu_avg, neg_avg))
|
296 |
-
|
297 |
return final_labels, final_scores, final_scores_list
|
298 |
|
299 |
def predict(self, texts: List[str]):
|
@@ -355,3 +378,139 @@ class SentimentAnalyzer:
|
|
355 |
logger.info(f"Score: {final_ensemble_score}")
|
356 |
logger.info(f"All Scores: {final_ensemble_all_score}")
|
357 |
return final_ensemble_prediction, final_ensemble_score, final_ensemble_all_score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
from .sa_utils import *
|
14 |
from .utils import download_models, softmax
|
15 |
|
16 |
+
from functools import lru_cache
|
17 |
+
from urllib.parse import unquote
|
18 |
+
|
19 |
+
import streamlit as st
|
20 |
+
import wikipedia
|
21 |
+
from codetiming import Timer
|
22 |
+
from fuzzysearch import find_near_matches
|
23 |
+
from googleapi import google
|
24 |
+
from transformers import AutoTokenizer
|
25 |
+
|
26 |
+
|
27 |
logger = logging.getLogger(__name__)
|
28 |
# Taken and Modified from https://huggingface.co/spaces/flax-community/chef-transformer/blob/main/app.py
|
29 |
class TextGeneration:
|
|
|
83 |
do_sample: bool,
|
84 |
num_beams: int,
|
85 |
):
|
86 |
+
logger.info(f"Generating with {model_name}")
|
87 |
prompt = self.preprocessor.preprocess(prompt)
|
88 |
return_full_text = False
|
89 |
return_text = True
|
|
|
139 |
return "Something happened 🤷♂️!!"
|
140 |
else:
|
141 |
generated_text = generated_text[0]["generated_text"]
|
142 |
+
|
143 |
+
logger.info(f"Prompt: {prompt}")
|
144 |
+
logger.info(f"Generated text: {generated_text}")
|
145 |
return self.preprocessor.unpreprocess(generated_text)
|
146 |
|
147 |
def query(self, payload, model_name):
|
|
|
234 |
preds_df = pd.DataFrame([])
|
235 |
for i in range(0, 5):
|
236 |
preds = []
|
237 |
+
for s in more_itertools.chunked(list(prep_texts), 128):
|
238 |
preds.extend(self.pipelines["sar_trial10"][i](s))
|
239 |
preds_df[f"model_{i}"] = preds
|
240 |
|
|
|
260 |
return final_labels, final_scores
|
261 |
|
262 |
def get_preds_from_a_model(self, texts: List[str], model_name):
|
263 |
+
try:
|
264 |
+
prep = self.processors[model_name]
|
265 |
|
266 |
+
prep_texts = [prep.preprocess(x) for x in texts]
|
267 |
+
if model_name == "sa_sarcasm":
|
268 |
+
sarcasm_label, _ = self.get_preds_from_sarcasm(texts)
|
269 |
+
sarcastic_map = {"Not_Sarcastic": "غير ساخر", "Sarcastic": "ساخر"}
|
270 |
+
labeled_prep_texts = []
|
271 |
+
for t, l in zip(prep_texts, sarcasm_label):
|
272 |
+
labeled_prep_texts.append(sarcastic_map[l] + " [SEP] " + t)
|
273 |
|
274 |
+
preds_df = pd.DataFrame([])
|
275 |
+
for i in range(0, 5):
|
276 |
+
preds = []
|
277 |
+
for s in more_itertools.chunked(list(prep_texts), 128):
|
278 |
+
preds.extend(self.pipelines[model_name][i](s))
|
279 |
+
preds_df[f"model_{i}"] = preds
|
|
|
280 |
|
281 |
+
final_labels = []
|
282 |
+
final_scores = []
|
283 |
+
final_scores_list = []
|
284 |
+
for id, row in preds_df.iterrows():
|
285 |
+
pos_total = 0
|
286 |
+
neg_total = 0
|
287 |
+
neu_total = 0
|
288 |
+
for pred in row[2:]:
|
289 |
+
pos_total += pred[0]["score"]
|
290 |
+
neu_total += pred[1]["score"]
|
291 |
+
neg_total += pred[2]["score"]
|
292 |
|
293 |
+
pos_avg = pos_total / 5
|
294 |
+
neu_avg = neu_total / 5
|
295 |
+
neg_avg = neg_total / 5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
|
297 |
+
if model_name == "sa_no_aoa_in_neutral":
|
298 |
+
final_labels.append(
|
299 |
+
self.pipelines[model_name][0].model.config.id2label[
|
300 |
+
np.argmax([neu_avg, neg_avg, pos_avg])
|
301 |
+
]
|
302 |
+
)
|
303 |
+
else:
|
304 |
+
final_labels.append(
|
305 |
+
self.pipelines[model_name][0].model.config.id2label[
|
306 |
+
np.argmax([pos_avg, neu_avg, neg_avg])
|
307 |
+
]
|
308 |
+
)
|
309 |
+
final_scores.append(np.max([pos_avg, neu_avg, neg_avg]))
|
310 |
+
final_scores_list.append((pos_avg, neu_avg, neg_avg))
|
311 |
+
except RuntimeError as e:
|
312 |
+
if model_name == "sa_cnnbert":
|
313 |
+
return (
|
314 |
+
["Neutral"] * len(texts),
|
315 |
+
[0.0] * len(texts),
|
316 |
+
[(0.0, 0.0, 0.0)] * len(texts),
|
317 |
)
|
318 |
else:
|
319 |
+
raise RuntimeError(e)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
return final_labels, final_scores, final_scores_list
|
321 |
|
322 |
def predict(self, texts: List[str]):
|
|
|
378 |
logger.info(f"Score: {final_ensemble_score}")
|
379 |
logger.info(f"All Scores: {final_ensemble_all_score}")
|
380 |
return final_ensemble_prediction, final_ensemble_score, final_ensemble_all_score
|
381 |
+
|
382 |
+
|
383 |
+
wikipedia.set_lang("ar")
|
384 |
+
|
385 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
386 |
+
|
387 |
+
preprocessor = ArabertPreprocessor("wissamantoun/araelectra-base-artydiqa")
|
388 |
+
logger.info("Loading QA Pipeline...")
|
389 |
+
tokenizer = AutoTokenizer.from_pretrained("wissamantoun/araelectra-base-artydiqa")
|
390 |
+
qa_pipe = pipeline("question-answering", model="wissamantoun/araelectra-base-artydiqa")
|
391 |
+
logger.info("Finished loading QA Pipeline...")
|
392 |
+
|
393 |
+
|
394 |
+
@lru_cache(maxsize=100)
|
395 |
+
def get_qa_answers(question):
|
396 |
+
logger.info("\n=================================================================")
|
397 |
+
logger.info(f"Question: {question}")
|
398 |
+
|
399 |
+
if "وسام أنطون" in question or "wissam antoun" in question.lower():
|
400 |
+
return {
|
401 |
+
"title": "Creator",
|
402 |
+
"results": [
|
403 |
+
{
|
404 |
+
"score": 1.0,
|
405 |
+
"new_start": 0,
|
406 |
+
"new_end": 12,
|
407 |
+
"new_answer": "My Creator 😜",
|
408 |
+
"original": "My Creator 😜",
|
409 |
+
"link": "https://github.com/WissamAntoun/",
|
410 |
+
}
|
411 |
+
],
|
412 |
+
}
|
413 |
+
search_timer = Timer(
|
414 |
+
"search and wiki", text="Search and Wikipedia Time: {:.2f}", logger=logging.info
|
415 |
+
)
|
416 |
+
try:
|
417 |
+
search_timer.start()
|
418 |
+
search_results = google.search(
|
419 |
+
question + " site:ar.wikipedia.org", lang="ar", area="ar"
|
420 |
+
)
|
421 |
+
if len(search_results) == 0:
|
422 |
+
return {}
|
423 |
+
|
424 |
+
page_name = search_results[0].link.split("wiki/")[-1]
|
425 |
+
wiki_page = wikipedia.page(unquote(page_name))
|
426 |
+
wiki_page_content = wiki_page.content
|
427 |
+
search_timer.stop()
|
428 |
+
except:
|
429 |
+
return {}
|
430 |
+
|
431 |
+
sections = []
|
432 |
+
for section in re.split("== .+ ==[^=]", wiki_page_content):
|
433 |
+
if not section.isspace():
|
434 |
+
prep_section = tokenizer.tokenize(preprocessor.preprocess(section))
|
435 |
+
if len(prep_section) > 500:
|
436 |
+
subsections = []
|
437 |
+
for subsection in re.split("=== .+ ===", section):
|
438 |
+
if subsection.isspace():
|
439 |
+
continue
|
440 |
+
prep_subsection = tokenizer.tokenize(
|
441 |
+
preprocessor.preprocess(subsection)
|
442 |
+
)
|
443 |
+
subsections.append(subsection)
|
444 |
+
# logger.info(f"Subsection found with length: {len(prep_subsection)}")
|
445 |
+
sections.extend(subsections)
|
446 |
+
else:
|
447 |
+
# logger.info(f"Regular Section with length: {len(prep_section)}")
|
448 |
+
sections.append(section)
|
449 |
+
|
450 |
+
full_len_sections = []
|
451 |
+
temp_section = ""
|
452 |
+
for section in sections:
|
453 |
+
if (
|
454 |
+
len(tokenizer.tokenize(preprocessor.preprocess(temp_section)))
|
455 |
+
+ len(tokenizer.tokenize(preprocessor.preprocess(section)))
|
456 |
+
> 384
|
457 |
+
):
|
458 |
+
if temp_section == "":
|
459 |
+
temp_section = section
|
460 |
+
continue
|
461 |
+
full_len_sections.append(temp_section)
|
462 |
+
# logger.info(
|
463 |
+
# f"full section length: {len(tokenizer.tokenize(preprocessor.preprocess(temp_section)))}"
|
464 |
+
# )
|
465 |
+
temp_section = ""
|
466 |
+
else:
|
467 |
+
temp_section += " " + section + " "
|
468 |
+
if temp_section != "":
|
469 |
+
full_len_sections.append(temp_section)
|
470 |
+
|
471 |
+
reader_time = Timer("electra", text="Reader Time: {:.2f}", logger=logging.info)
|
472 |
+
reader_time.start()
|
473 |
+
results = qa_pipe(
|
474 |
+
question=[preprocessor.preprocess(question)] * len(full_len_sections),
|
475 |
+
context=[preprocessor.preprocess(x) for x in full_len_sections],
|
476 |
+
)
|
477 |
+
|
478 |
+
if not isinstance(results, list):
|
479 |
+
results = [results]
|
480 |
+
|
481 |
+
logger.info(f"Wiki Title: {unquote(page_name)}")
|
482 |
+
logger.info(f"Total Sections: {len(sections)}")
|
483 |
+
logger.info(f"Total Full Sections: {len(full_len_sections)}")
|
484 |
+
|
485 |
+
for result, section in zip(results, full_len_sections):
|
486 |
+
result["original"] = section
|
487 |
+
answer_match = find_near_matches(
|
488 |
+
" " + preprocessor.unpreprocess(result["answer"]) + " ",
|
489 |
+
result["original"],
|
490 |
+
max_l_dist=min(5, len(preprocessor.unpreprocess(result["answer"])) // 2),
|
491 |
+
max_deletions=0,
|
492 |
+
)
|
493 |
+
try:
|
494 |
+
result["new_start"] = answer_match[0].start
|
495 |
+
result["new_end"] = answer_match[0].end
|
496 |
+
result["new_answer"] = answer_match[0].matched
|
497 |
+
result["link"] = (
|
498 |
+
search_results[0].link + "#:~:text=" + result["new_answer"].strip()
|
499 |
+
)
|
500 |
+
except:
|
501 |
+
result["new_start"] = result["start"]
|
502 |
+
result["new_end"] = result["end"]
|
503 |
+
result["new_answer"] = result["answer"]
|
504 |
+
result["original"] = preprocessor.preprocess(result["original"])
|
505 |
+
result["link"] = search_results[0].link
|
506 |
+
logger.info(f"Answers: {preprocessor.preprocess(result['new_answer'])}")
|
507 |
+
|
508 |
+
sorted_results = sorted(results, reverse=True, key=lambda x: x["score"])
|
509 |
+
|
510 |
+
return_dict = {}
|
511 |
+
return_dict["title"] = unquote(page_name)
|
512 |
+
return_dict["results"] = sorted_results
|
513 |
+
|
514 |
+
reader_time.stop()
|
515 |
+
logger.info(f"Total time spent: {reader_time.last + search_timer.last}")
|
516 |
+
return return_dict
|
backend/utils.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import numpy as np
|
2 |
import psutil
|
3 |
import os
|
@@ -40,3 +41,24 @@ def download_models(models):
|
|
40 |
|
41 |
def softmax(x):
|
42 |
return np.exp(x) / sum(np.exp(x))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
import numpy as np
|
3 |
import psutil
|
4 |
import os
|
|
|
41 |
|
42 |
def softmax(x):
|
43 |
return np.exp(x) / sum(np.exp(x))
|
44 |
+
|
45 |
+
|
46 |
+
def ga(file):
|
47 |
+
code = """
|
48 |
+
<!-- Global site tag (gtag.js) - Google Analytics -->
|
49 |
+
<script async src="https://www.googletagmanager.com/gtag/js?id=G-NH9HWCW08F"></script>
|
50 |
+
<script>
|
51 |
+
window.dataLayer = window.dataLayer || [];
|
52 |
+
function gtag(){dataLayer.push(arguments);}
|
53 |
+
gtag('js', new Date());
|
54 |
+
gtag('config', 'G-NH9HWCW08F');
|
55 |
+
</script>
|
56 |
+
"""
|
57 |
+
|
58 |
+
a = os.path.dirname(file) + "/static/index.html"
|
59 |
+
with open(a, "r") as f:
|
60 |
+
data = f.read()
|
61 |
+
if len(re.findall("G-", data)) == 0:
|
62 |
+
with open(a, "w") as ff:
|
63 |
+
newdata = re.sub("<head>", "<head>" + code, data)
|
64 |
+
ff.write(newdata)
|
images/is2alni_logo.png
ADDED
requirements.txt
CHANGED
@@ -10,4 +10,8 @@ transformers==4.10.0
|
|
10 |
psutil==5.8.0
|
11 |
fuzzysearch==0.7.3
|
12 |
more-itertools==8.9.0
|
13 |
-
cookiecutter
|
|
|
|
|
|
|
|
|
|
10 |
psutil==5.8.0
|
11 |
fuzzysearch==0.7.3
|
12 |
more-itertools==8.9.0
|
13 |
+
cookiecutter
|
14 |
+
git+https://github.com/dantru7/Google-Search-API
|
15 |
+
codetiming==1.3.0
|
16 |
+
htbuilder
|
17 |
+
wikipedia==1.4.0
|