Spaces:
Runtime error
Runtime error
File size: 5,761 Bytes
f91510c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.vectorstores import Chroma\n",
"from langchain.chains import VectorDBQA\n",
"from langchain.document_loaders import PagedPDFSplitter\n",
"from langchain.llms import OpenAI\n",
"from langchain import OpenAI, VectorDBQA"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"file_path = \"1706.03762.pdf\"\n",
"\n",
"# Load the document\n",
"\n",
"loader = PagedPDFSplitter(file_path)\n",
"docs = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"chroma = Chroma(embedding_function=OpenAIEmbeddings())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"chroma.add_documents(docs)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Text Generation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import LLMChain\n",
"from langchain import PromptTemplate\n",
"\n",
"prompt_template = \"\"\"\n",
"You will be presented with a section of an Arxiv paper. Your job is to write the python + PyTorch code that exactly implements the paper with NO ERRORS.\n",
"Additionally, you will be shown previously generated code. You must use this code as a reference and keep variable/function names the same.\n",
"Use the context below to write a 400 word blog post about the topic below:\n",
" \n",
" Arxiv paper section: {paper}\n",
" Previous Code: {prev_code}\n",
" Next Code: \n",
"\"\"\"\n",
"\n",
"PROMPT = PromptTemplate(\n",
" template=prompt_template, input_variables=[\"paper\", \"prev_code\"]\n",
")\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"\n",
"chain = LLMChain(llm=llm, prompt=PROMPT)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def generate_code(title, paper, prev_code, **kwargs):\n",
" return chain.apply({\"title\": title, \"paper\": paper, \"prev_code\": prev_code})"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"with open(\"main.tex\", \"r\") as f:\n",
" main_tex = f.read()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"len(main_tex)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"out = generate_code(title=\"Long Range Language Modeling via Gated State Spaces\", prev_code=\"import torch\", paper=main_tex)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# QA"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"qa = VectorDBQA.from_chain_type(llm=OpenAI(), chain_type=\"stuff\", vectorstore=chroma)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"qa.run(\"What is the purpose of this paper?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"qa.run(\"What is the main contribution of this paper?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"qa.run(\"Given the text of the arxiv paper you know about, can you propose a structure for a jupyter notebook that would summarize the papers key contributions and findings? The notebook should be structure in a logical and coherent way, with sections and sub-sections that reflect the papers organization. Only include portions of the paper that are relevant to code -- for example, do not include suggestions for further research or future work. The output should be in this format:\\n- each section should be numbered and have a title (e.g. Training and Inference)\\n- each subsection should start with a dash (e.g., - Overview of the training process)\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"qa.run(\"For the following arxiv paper sections, can you generate text descriptions and code for a jupyter notebook:\\n3. Training\\n- Overview of training data and batching\\n- hardware and schedule\\n- optimizer\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"qa.run(\"What python code that implements this paper.\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "langchain",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "38273b2daeac471f0eac904bde99a8af597df3ec437acfdd6914b298b9a2825e"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|