aus10powell commited on
Commit
be5ab72
·
verified ·
1 Parent(s): 880285e

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +42 -0
  2. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from huggingface_hub import hf_hub_download
3
+ from llama_cpp import Llama
4
+
5
+ @st.cache_resource
6
+ def load_model():
7
+ model_name = "aaditya/OpenBioLLM-Llama3-8B-GGUF"
8
+ model_file = "openbiollm-llama3-8b.Q5_K_M.gguf"
9
+ model_path = hf_hub_download(model_name, filename=model_file)
10
+ return Llama(model_path=model_path, n_gpu_layers=-1)
11
+
12
+ llm = load_model()
13
+
14
+ st.title("OpenBioLLM Chat Interface")
15
+
16
+ # Initialize chat history
17
+ if "messages" not in st.session_state:
18
+ st.session_state.messages = []
19
+
20
+ # Display chat messages from history on app rerun
21
+ for message in st.session_state.messages:
22
+ with st.chat_message(message["role"]):
23
+ st.markdown(message["content"])
24
+
25
+ # React to user input
26
+ if question := st.chat_input("What is your medical question?"):
27
+ # Display user message in chat message container
28
+ st.chat_message("user").markdown(question)
29
+ # Add user message to chat history
30
+ st.session_state.messages.append({"role": "user", "content": question})
31
+
32
+ # Construct the prompt
33
+ prompt = f"""You are an expert and experienced from the healthcare and biomedical domain with extensive medical knowledge and practical experience. Your name is OpenBioLLM, and you were developed by Saama AI Labs with Open Life Science AI. who's willing to help answer the user's query with explanation. In your explanation, leverage your deep medical expertise such as relevant anatomical structures, physiological processes, diagnostic criteria, treatment guidelines, or other pertinent medical concepts. Use precise medical terminology while still aiming to make the explanation clear and accessible to a general audience. Medical Question: {question} Medical Answer:"""
34
+
35
+ # Generate response
36
+ response = llm(prompt, max_tokens=4000)['choices'][0]['text']
37
+
38
+ # Display assistant response in chat message container
39
+ with st.chat_message("assistant"):
40
+ st.markdown(response)
41
+ # Add assistant response to chat history
42
+ st.session_state.messages.append({"role": "assistant", "content": response})
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ streamlit
2
+ huggingface_hub
3
+ llama-cpp-python