aus10powell commited on
Commit
af2c220
·
1 Parent(s): 17fc7b7

Update scripts/sentiment.py

Browse files
Files changed (1) hide show
  1. scripts/sentiment.py +6 -8
scripts/sentiment.py CHANGED
@@ -6,6 +6,11 @@ from tqdm import tqdm
6
  import numpy as np
7
  import numpy as np
8
  import scipy
 
 
 
 
 
9
 
10
  def tweet_cleaner(tweet: str) -> str:
11
  # words = set(nltk.corpus.words.words())
@@ -93,13 +98,6 @@ def twitter_sentiment_api_score(
93
  }
94
  )
95
  else:
96
-
97
- from transformers import AutoModelForSequenceClassification
98
- from transformers import TFAutoModelForSequenceClassification
99
- from transformers import AutoTokenizer
100
- from scipy.special import softmax
101
- import os
102
-
103
  task = "sentiment"
104
  MODEL = f"cardiffnlp/twitter-roberta-base-{task}"
105
  tokenizer = AutoTokenizer.from_pretrained(MODEL)
@@ -124,7 +122,7 @@ def twitter_sentiment_api_score(
124
  results["argmax"] = max_key
125
  return results
126
 
127
- return [get_sentimet(t) for t in tweet_list]
128
 
129
  # Loop through the list of sentiment scores and replace the sentiment labels with more intuitive labels
130
  result = []
 
6
  import numpy as np
7
  import numpy as np
8
  import scipy
9
+ from transformers import AutoModelForSequenceClassification
10
+ from transformers import TFAutoModelForSequenceClassification
11
+ from transformers import AutoTokenizer
12
+ from scipy.special import softmax
13
+ import os
14
 
15
  def tweet_cleaner(tweet: str) -> str:
16
  # words = set(nltk.corpus.words.words())
 
98
  }
99
  )
100
  else:
 
 
 
 
 
 
 
101
  task = "sentiment"
102
  MODEL = f"cardiffnlp/twitter-roberta-base-{task}"
103
  tokenizer = AutoTokenizer.from_pretrained(MODEL)
 
122
  results["argmax"] = max_key
123
  return results
124
 
125
+ return [get_sentimet(t) for t in tqdm(tweet_list)]
126
 
127
  # Loop through the list of sentiment scores and replace the sentiment labels with more intuitive labels
128
  result = []