Spaces:
Runtime error
Runtime error
aus10powell
commited on
Commit
·
af2c220
1
Parent(s):
17fc7b7
Update scripts/sentiment.py
Browse files- scripts/sentiment.py +6 -8
scripts/sentiment.py
CHANGED
@@ -6,6 +6,11 @@ from tqdm import tqdm
|
|
6 |
import numpy as np
|
7 |
import numpy as np
|
8 |
import scipy
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def tweet_cleaner(tweet: str) -> str:
|
11 |
# words = set(nltk.corpus.words.words())
|
@@ -93,13 +98,6 @@ def twitter_sentiment_api_score(
|
|
93 |
}
|
94 |
)
|
95 |
else:
|
96 |
-
|
97 |
-
from transformers import AutoModelForSequenceClassification
|
98 |
-
from transformers import TFAutoModelForSequenceClassification
|
99 |
-
from transformers import AutoTokenizer
|
100 |
-
from scipy.special import softmax
|
101 |
-
import os
|
102 |
-
|
103 |
task = "sentiment"
|
104 |
MODEL = f"cardiffnlp/twitter-roberta-base-{task}"
|
105 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
@@ -124,7 +122,7 @@ def twitter_sentiment_api_score(
|
|
124 |
results["argmax"] = max_key
|
125 |
return results
|
126 |
|
127 |
-
return [get_sentimet(t) for t in tweet_list]
|
128 |
|
129 |
# Loop through the list of sentiment scores and replace the sentiment labels with more intuitive labels
|
130 |
result = []
|
|
|
6 |
import numpy as np
|
7 |
import numpy as np
|
8 |
import scipy
|
9 |
+
from transformers import AutoModelForSequenceClassification
|
10 |
+
from transformers import TFAutoModelForSequenceClassification
|
11 |
+
from transformers import AutoTokenizer
|
12 |
+
from scipy.special import softmax
|
13 |
+
import os
|
14 |
|
15 |
def tweet_cleaner(tweet: str) -> str:
|
16 |
# words = set(nltk.corpus.words.words())
|
|
|
98 |
}
|
99 |
)
|
100 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
task = "sentiment"
|
102 |
MODEL = f"cardiffnlp/twitter-roberta-base-{task}"
|
103 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
|
|
122 |
results["argmax"] = max_key
|
123 |
return results
|
124 |
|
125 |
+
return [get_sentimet(t) for t in tqdm(tweet_list)]
|
126 |
|
127 |
# Loop through the list of sentiment scores and replace the sentiment labels with more intuitive labels
|
128 |
result = []
|