austindavis
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import io
|
|
2 |
import traceback
|
3 |
from typing import List
|
4 |
|
|
|
5 |
import chess.pgn
|
6 |
import chess.svg
|
7 |
import gradio as gr
|
@@ -10,12 +11,12 @@ import tokenizers
|
|
10 |
import torch
|
11 |
from tokenizers import models, pre_tokenizers, processors
|
12 |
from torch import Tensor as TT
|
13 |
-
from transformers import AutoModelForCausalLM, GPT2LMHeadModel,
|
14 |
-
|
15 |
-
import chess
|
16 |
|
17 |
checkpoint_name = "austindavis/chess-gpt2-uci-8x8x512"
|
18 |
|
|
|
19 |
class UciTokenizer(PreTrainedTokenizerFast):
|
20 |
_PAD_TOKEN: str
|
21 |
_UNK_TOKEN: str
|
@@ -40,14 +41,15 @@ class UciTokenizer(PreTrainedTokenizerFast):
|
|
40 |
):
|
41 |
self.stoi = stoi
|
42 |
self.itos = itos
|
43 |
-
|
44 |
self._PAD_TOKEN = pad_token
|
45 |
self._UNK_TOKEN = unk_token
|
46 |
self._EOS_TOKEN = eos_token
|
47 |
self._BOS_TOKEN = bos_token
|
48 |
|
49 |
# Define the model
|
50 |
-
tok_model = models.WordLevel(vocab=self.stoi,
|
|
|
51 |
|
52 |
slow_tokenizer = tokenizers.Tokenizer(tok_model)
|
53 |
slow_tokenizer.pre_tokenizer = self._init_pretokenizer()
|
@@ -58,8 +60,8 @@ class UciTokenizer(PreTrainedTokenizerFast):
|
|
58 |
pair=None,
|
59 |
special_tokens=[(bos_token, 1)],
|
60 |
)
|
61 |
-
slow_tokenizer.post_processor=post_proc
|
62 |
-
|
63 |
super().__init__(
|
64 |
tokenizer_object=slow_tokenizer,
|
65 |
unk_token=self._UNK_TOKEN,
|
@@ -84,14 +86,13 @@ class UciTokenizer(PreTrainedTokenizerFast):
|
|
84 |
|
85 |
if isinstance(token_ids, TT):
|
86 |
token_ids = token_ids.tolist()
|
87 |
-
|
88 |
if isinstance(token_ids, list):
|
89 |
-
tokens_str = [self.itos.get(xi, self._UNK_TOKEN)
|
|
|
90 |
moves = self._process_str_tokens(tokens_str)
|
91 |
|
92 |
return " ".join(moves)
|
93 |
-
|
94 |
-
|
95 |
|
96 |
self._decode = _decode
|
97 |
|
@@ -100,32 +101,45 @@ class UciTokenizer(PreTrainedTokenizerFast):
|
|
100 |
|
101 |
def _process_str_tokens(self, tokens_str: list[str]) -> list[str]:
|
102 |
raise NotImplementedError
|
103 |
-
|
104 |
def get_id2square_list() -> list[int]:
|
105 |
raise NotImplementedError
|
106 |
|
|
|
107 |
class UciTileTokenizer(UciTokenizer):
|
108 |
-
"""
|
|
|
|
|
109 |
stoi = {
|
110 |
tok: idx
|
111 |
for tok, idx in list(
|
112 |
-
zip(
|
|
|
|
|
|
|
|
|
|
|
113 |
)
|
114 |
}
|
115 |
-
|
116 |
itos = {
|
117 |
idx: tok
|
118 |
for tok, idx in list(
|
119 |
-
zip(
|
|
|
|
|
|
|
|
|
120 |
)
|
121 |
}
|
122 |
|
123 |
-
id2square:List[int] = [None]*4 + list(range(64))+[None]*4
|
124 |
"""
|
125 |
-
List mapping token IDs to squares on the chess board.
|
126 |
-
|
|
|
127 |
"""
|
128 |
-
|
129 |
def get_id2square_list(self) -> List[int]:
|
130 |
return self.id2square
|
131 |
|
@@ -147,7 +161,8 @@ class UciTileTokenizer(UciTokenizer):
|
|
147 |
pre_tokenizer = pre_tokenizers.Sequence(
|
148 |
[
|
149 |
pre_tokenizers.Whitespace(),
|
150 |
-
pre_tokenizers.Split(pattern=pattern,
|
|
|
151 |
]
|
152 |
)
|
153 |
return pre_tokenizer
|
@@ -175,40 +190,39 @@ class UciTileTokenizer(UciTokenizer):
|
|
175 |
|
176 |
moves.append(next_move)
|
177 |
return moves
|
178 |
-
|
|
|
179 |
def setup_app(model: GPT2LMHeadModel):
|
180 |
"""
|
181 |
-
Configures a Gradio App to use the GPT model for move generation.
|
182 |
The model must be compatible with a UciTileTokenizer.
|
183 |
"""
|
184 |
tokenizer = UciTileTokenizer()
|
185 |
|
186 |
# Initialize the chess board
|
187 |
board = chess.Board()
|
188 |
-
game:chess.pgn.GameNode = chess.pgn.Game()
|
189 |
-
|
190 |
-
|
191 |
|
192 |
game.headers["Event"] = "Example"
|
193 |
|
194 |
generate_kwargs = {
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
def make_move(input:str, node=game, board
|
204 |
# check for reset
|
205 |
-
if input.lower() ==
|
206 |
board.reset()
|
207 |
node.root().variations.clear()
|
208 |
return chess.svg.board(board=board), "New game!"
|
209 |
-
|
210 |
# check for pgn
|
211 |
-
if input[0] ==
|
212 |
pgn = io.StringIO(input)
|
213 |
game = chess.pgn.read_game(pgn)
|
214 |
board.reset()
|
@@ -218,8 +232,10 @@ def setup_app(model: GPT2LMHeadModel):
|
|
218 |
board.push(move)
|
219 |
node.add_variation(move)
|
220 |
|
221 |
-
return
|
222 |
-
|
|
|
|
|
223 |
|
224 |
try:
|
225 |
move = chess.Move.from_uci(input)
|
@@ -232,22 +248,35 @@ def setup_app(model: GPT2LMHeadModel):
|
|
232 |
|
233 |
# get computer's move
|
234 |
|
235 |
-
prefix =
|
236 |
-
encoding = tokenizer(
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
unique_indices =
|
244 |
-
|
245 |
-
|
246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
# select moves based on mean logit value for tokens 1 and 2
|
248 |
-
logit_priority_order =
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
priority_ordered_moves = unique_moves[logit_priority_order]
|
250 |
-
|
251 |
# if there's only 1 option, we have to pack it back into a list
|
252 |
if isinstance(priority_ordered_moves, str):
|
253 |
priority_ordered_moves = [priority_ordered_moves]
|
@@ -260,40 +289,61 @@ def setup_app(model: GPT2LMHeadModel):
|
|
260 |
while node.next() is not None:
|
261 |
node = node.next()
|
262 |
node = node.add_variation(move)
|
263 |
-
return
|
264 |
-
|
|
|
|
|
|
|
265 |
# no moves are valid
|
266 |
-
bad_from_tiles = [
|
267 |
-
|
268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
checks = None
|
270 |
if board.is_check():
|
271 |
-
checks =
|
272 |
-
|
273 |
-
|
|
|
|
|
|
|
|
|
|
|
274 |
else:
|
275 |
-
return
|
276 |
-
|
|
|
|
|
|
|
277 |
except chess.InvalidMoveError:
|
278 |
-
return chess.svg.board(board=board),
|
|
|
279 |
except Exception:
|
280 |
return chess.svg.board(board=board), traceback.format_exc()
|
281 |
|
282 |
-
input_box = gr.Textbox(None,placeholder="Enter your move in UCI format")
|
283 |
|
284 |
# Define the Gradio interface
|
285 |
iface = gr.Interface(
|
286 |
fn=make_move,
|
287 |
inputs=input_box,
|
288 |
outputs=["html", "text"],
|
289 |
-
examples=[[
|
290 |
title="Play Versus ChessGPT",
|
291 |
-
description="Enter moves in UCI notation (e.g., e2e4 for pawn from e2
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
)
|
298 |
|
299 |
iface.output_components[0].label = "Board"
|
@@ -302,8 +352,9 @@ def setup_app(model: GPT2LMHeadModel):
|
|
302 |
|
303 |
return iface
|
304 |
|
|
|
305 |
model: GPT2LMHeadModel = AutoModelForCausalLM.from_pretrained(checkpoint_name)
|
306 |
model.requires_grad_(False)
|
307 |
|
308 |
iface = setup_app(model)
|
309 |
-
iface.launch()
|
|
|
2 |
import traceback
|
3 |
from typing import List
|
4 |
|
5 |
+
import chess
|
6 |
import chess.pgn
|
7 |
import chess.svg
|
8 |
import gradio as gr
|
|
|
11 |
import torch
|
12 |
from tokenizers import models, pre_tokenizers, processors
|
13 |
from torch import Tensor as TT
|
14 |
+
from transformers import (AutoModelForCausalLM, GPT2LMHeadModel,
|
15 |
+
PreTrainedTokenizerFast)
|
|
|
16 |
|
17 |
checkpoint_name = "austindavis/chess-gpt2-uci-8x8x512"
|
18 |
|
19 |
+
|
20 |
class UciTokenizer(PreTrainedTokenizerFast):
|
21 |
_PAD_TOKEN: str
|
22 |
_UNK_TOKEN: str
|
|
|
41 |
):
|
42 |
self.stoi = stoi
|
43 |
self.itos = itos
|
44 |
+
|
45 |
self._PAD_TOKEN = pad_token
|
46 |
self._UNK_TOKEN = unk_token
|
47 |
self._EOS_TOKEN = eos_token
|
48 |
self._BOS_TOKEN = bos_token
|
49 |
|
50 |
# Define the model
|
51 |
+
tok_model = models.WordLevel(vocab=self.stoi,
|
52 |
+
unk_token=self._UNK_TOKEN)
|
53 |
|
54 |
slow_tokenizer = tokenizers.Tokenizer(tok_model)
|
55 |
slow_tokenizer.pre_tokenizer = self._init_pretokenizer()
|
|
|
60 |
pair=None,
|
61 |
special_tokens=[(bos_token, 1)],
|
62 |
)
|
63 |
+
slow_tokenizer.post_processor = post_proc
|
64 |
+
|
65 |
super().__init__(
|
66 |
tokenizer_object=slow_tokenizer,
|
67 |
unk_token=self._UNK_TOKEN,
|
|
|
86 |
|
87 |
if isinstance(token_ids, TT):
|
88 |
token_ids = token_ids.tolist()
|
89 |
+
|
90 |
if isinstance(token_ids, list):
|
91 |
+
tokens_str = [self.itos.get(xi, self._UNK_TOKEN)
|
92 |
+
for xi in token_ids]
|
93 |
moves = self._process_str_tokens(tokens_str)
|
94 |
|
95 |
return " ".join(moves)
|
|
|
|
|
96 |
|
97 |
self._decode = _decode
|
98 |
|
|
|
101 |
|
102 |
def _process_str_tokens(self, tokens_str: list[str]) -> list[str]:
|
103 |
raise NotImplementedError
|
104 |
+
|
105 |
def get_id2square_list() -> list[int]:
|
106 |
raise NotImplementedError
|
107 |
|
108 |
+
|
109 |
class UciTileTokenizer(UciTokenizer):
|
110 |
+
"""Uci tokenizer converting start/end tiles and promotion types each
|
111 |
+
into individual tokens"""
|
112 |
+
|
113 |
stoi = {
|
114 |
tok: idx
|
115 |
for tok, idx in list(
|
116 |
+
zip(
|
117 |
+
["<pad>", "<s>", "</s>", "<unk>"] +
|
118 |
+
chess.SQUARE_NAMES +
|
119 |
+
list("qrbn"),
|
120 |
+
range(72),
|
121 |
+
)
|
122 |
)
|
123 |
}
|
124 |
+
|
125 |
itos = {
|
126 |
idx: tok
|
127 |
for tok, idx in list(
|
128 |
+
zip(
|
129 |
+
["<pad>", "<s>", "</s>", "<unk>"] +
|
130 |
+
chess.SQUARE_NAMES + list("qrbn"),
|
131 |
+
range(72),
|
132 |
+
)
|
133 |
)
|
134 |
}
|
135 |
|
136 |
+
id2square: List[int] = [None] * 4 + list(range(64)) + [None] * 4
|
137 |
"""
|
138 |
+
List mapping token IDs to squares on the chess board.
|
139 |
+
Order is file then row, i.e.:
|
140 |
+
`A1, B1, C1, ..., F8, G8, H8`
|
141 |
"""
|
142 |
+
|
143 |
def get_id2square_list(self) -> List[int]:
|
144 |
return self.id2square
|
145 |
|
|
|
161 |
pre_tokenizer = pre_tokenizers.Sequence(
|
162 |
[
|
163 |
pre_tokenizers.Whitespace(),
|
164 |
+
pre_tokenizers.Split(pattern=pattern,
|
165 |
+
behavior="merged_with_previous"),
|
166 |
]
|
167 |
)
|
168 |
return pre_tokenizer
|
|
|
190 |
|
191 |
moves.append(next_move)
|
192 |
return moves
|
193 |
+
|
194 |
+
|
195 |
def setup_app(model: GPT2LMHeadModel):
|
196 |
"""
|
197 |
+
Configures a Gradio App to use the GPT model for move generation.
|
198 |
The model must be compatible with a UciTileTokenizer.
|
199 |
"""
|
200 |
tokenizer = UciTileTokenizer()
|
201 |
|
202 |
# Initialize the chess board
|
203 |
board = chess.Board()
|
204 |
+
game: chess.pgn.GameNode = chess.pgn.Game()
|
|
|
|
|
205 |
|
206 |
game.headers["Event"] = "Example"
|
207 |
|
208 |
generate_kwargs = {
|
209 |
+
"max_new_tokens": 3,
|
210 |
+
"num_return_sequences": 10,
|
211 |
+
"temperature": 0.5,
|
212 |
+
"output_scores": True,
|
213 |
+
"output_logits": True,
|
214 |
+
"return_dict_in_generate": True,
|
215 |
+
}
|
216 |
+
|
217 |
+
def make_move(input: str, node=game, board=board):
|
218 |
# check for reset
|
219 |
+
if input.lower() == "reset":
|
220 |
board.reset()
|
221 |
node.root().variations.clear()
|
222 |
return chess.svg.board(board=board), "New game!"
|
223 |
+
|
224 |
# check for pgn
|
225 |
+
if input[0] == "[" or input[:3] == "1. ":
|
226 |
pgn = io.StringIO(input)
|
227 |
game = chess.pgn.read_game(pgn)
|
228 |
board.reset()
|
|
|
232 |
board.push(move)
|
233 |
node.add_variation(move)
|
234 |
|
235 |
+
return (
|
236 |
+
chess.svg.board(board=board, lastmove=move),
|
237 |
+
"",
|
238 |
+
) # str(node.root()).split(']')[-1].strip()
|
239 |
|
240 |
try:
|
241 |
move = chess.Move.from_uci(input)
|
|
|
248 |
|
249 |
# get computer's move
|
250 |
|
251 |
+
prefix = " ".join([x.uci() for x in board.move_stack])
|
252 |
+
encoding = tokenizer(
|
253 |
+
text=prefix,
|
254 |
+
return_tensors="pt",
|
255 |
+
)["input_ids"]
|
256 |
+
|
257 |
+
output = model.generate(encoding, **generate_kwargs) # [b,p,v]
|
258 |
+
new_tokens = tokenizer.batch_decode(output.sequences[:, -3:])
|
259 |
+
unique_moves, unique_indices = np.unique(
|
260 |
+
[x[:4] if " " in x else x for x in new_tokens],
|
261 |
+
return_index=True
|
262 |
+
)
|
263 |
+
unique_indices = (
|
264 |
+
torch.Tensor(list(unique_indices))
|
265 |
+
.to(dtype=torch.int)
|
266 |
+
)
|
267 |
+
logits = torch.stack(output.logits) # [token, batch, vocab]
|
268 |
+
logits = logits[:, unique_indices] # [token, batch, vocab]
|
269 |
+
|
270 |
# select moves based on mean logit value for tokens 1 and 2
|
271 |
+
logit_priority_order = (
|
272 |
+
logits.max(dim=-1)
|
273 |
+
.values.T[:, :2]
|
274 |
+
.mean(-1)
|
275 |
+
.topk(len(unique_indices))
|
276 |
+
.indices
|
277 |
+
)
|
278 |
priority_ordered_moves = unique_moves[logit_priority_order]
|
279 |
+
|
280 |
# if there's only 1 option, we have to pack it back into a list
|
281 |
if isinstance(priority_ordered_moves, str):
|
282 |
priority_ordered_moves = [priority_ordered_moves]
|
|
|
289 |
while node.next() is not None:
|
290 |
node = node.next()
|
291 |
node = node.add_variation(move)
|
292 |
+
return (
|
293 |
+
chess.svg.board(board=board, lastmove=move),
|
294 |
+
"".join(str(node.root()).split("]")[-1]).strip(),
|
295 |
+
)
|
296 |
+
|
297 |
# no moves are valid
|
298 |
+
bad_from_tiles = [
|
299 |
+
chess.parse_square(x) for x in [x[:2]
|
300 |
+
for x in unique_moves]
|
301 |
+
]
|
302 |
+
bad_to_tiles = [
|
303 |
+
chess.parse_square(x) for x in [x[2:]
|
304 |
+
for x in unique_moves]
|
305 |
+
]
|
306 |
+
arrows = [
|
307 |
+
chess.svg.Arrow(tail, head, color="red")
|
308 |
+
for (tail, head) in zip(bad_from_tiles, bad_to_tiles)
|
309 |
+
]
|
310 |
checks = None
|
311 |
if board.is_check():
|
312 |
+
checks = (board
|
313 |
+
.pieces(chess.PIECE_TYPES[-1], board.turn)
|
314 |
+
.pop()
|
315 |
+
)
|
316 |
+
|
317 |
+
return chess.svg.board(
|
318 |
+
board=board, arrows=arrows, check=checks
|
319 |
+
), "|".join(unique_moves)
|
320 |
else:
|
321 |
+
return (
|
322 |
+
chess.svg.board(board=board, lastmove=move),
|
323 |
+
f"Illegal move: {input}",
|
324 |
+
)
|
325 |
+
|
326 |
except chess.InvalidMoveError:
|
327 |
+
return (chess.svg.board(board=board),
|
328 |
+
f"Invalid UCI format: {input}")
|
329 |
except Exception:
|
330 |
return chess.svg.board(board=board), traceback.format_exc()
|
331 |
|
332 |
+
input_box = gr.Textbox(None, placeholder="Enter your move in UCI format")
|
333 |
|
334 |
# Define the Gradio interface
|
335 |
iface = gr.Interface(
|
336 |
fn=make_move,
|
337 |
inputs=input_box,
|
338 |
outputs=["html", "text"],
|
339 |
+
examples=[["e2e4"], ["d2d4"], ["Reset"]],
|
340 |
title="Play Versus ChessGPT",
|
341 |
+
description="Enter moves in UCI notation (e.g., e2e4 for pawn from e2 \
|
342 |
+
to e4). Enter 'reset' to restart the game.",
|
343 |
+
allow_flagging="never",
|
344 |
+
submit_btn="Move",
|
345 |
+
stop_btn="Stop",
|
346 |
+
clear_btn="Clear w/o reset",
|
347 |
)
|
348 |
|
349 |
iface.output_components[0].label = "Board"
|
|
|
352 |
|
353 |
return iface
|
354 |
|
355 |
+
|
356 |
model: GPT2LMHeadModel = AutoModelForCausalLM.from_pretrained(checkpoint_name)
|
357 |
model.requires_grad_(False)
|
358 |
|
359 |
iface = setup_app(model)
|
360 |
+
iface.launch(share=True)
|