Spaces:
Running
Running
File size: 4,396 Bytes
d165b85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import os
import openai
import ast
from tools import functions, TOOLS
MAX_ITER = 5
openai.api_key = os.getenv("OPENAI_API_KEY")
default_model = os.getenv("DEFAULT_MODEL")
if default_model is None:
default_model = "gpt-3.5-turbo-16k"
import chainlit as cl
async def process_new_delta(new_delta, openai_message, content_ui_message, function_ui_message):
if "role" in new_delta:
openai_message["role"] = new_delta["role"]
if "content" in new_delta:
new_content = new_delta.get("content") or ""
openai_message["content"] += new_content
await content_ui_message.stream_token(new_content)
if "function_call" in new_delta:
if "name" in new_delta["function_call"]:
openai_message["function_call"] = {
"name": new_delta["function_call"]["name"]}
await content_ui_message.send()
function_ui_message = cl.Message(
author=new_delta["function_call"]["name"],
content="", indent=1, language="json")
await function_ui_message.stream_token(new_delta["function_call"]["name"])
if "arguments" in new_delta["function_call"]:
if "arguments" not in openai_message["function_call"]:
openai_message["function_call"]["arguments"] = ""
openai_message["function_call"]["arguments"] += new_delta["function_call"]["arguments"]
await function_ui_message.stream_token(new_delta["function_call"]["arguments"])
return openai_message, content_ui_message, function_ui_message
system_message = "You are a mighty cyber professor. Follow the following instructions: " \
"1. You always response in the same language as your student." \
"2. Ask your student for further information if necessary to provide more assistance. " \
"3. If your student asks you to do something out of your responsibility, please say no. "
@cl.on_chat_start
def start_chat():
cl.user_session.set(
"message_history",
[{"role": "system", "content": system_message}],
)
@cl.on_message
async def run_conversation(user_message: str):
message_history = cl.user_session.get("message_history")
message_history.append({"role": "user", "content": user_message})
cur_iter = 0
while cur_iter < MAX_ITER:
# OpenAI call
openai_message = {"role": "", "content": ""}
function_ui_message = None
content_ui_message = cl.Message(content="")
async for stream_resp in await openai.ChatCompletion.acreate(
model=default_model,
messages=message_history,
stream=True,
function_call="auto",
functions=functions,
temperature=0.9
):
new_delta = stream_resp.choices[0]["delta"]
openai_message, content_ui_message, function_ui_message = await process_new_delta(
new_delta, openai_message, content_ui_message, function_ui_message)
message_history.append(openai_message)
if function_ui_message is not None:
await function_ui_message.send()
if stream_resp.choices[0]["finish_reason"] == "stop":
break
elif stream_resp.choices[0]["finish_reason"] != "function_call":
raise ValueError(stream_resp.choices[0]["finish_reason"])
# if code arrives here, it means there is a function call
function_name = openai_message.get("function_call").get("name")
arguments = ast.literal_eval(
openai_message.get("function_call").get("arguments"))
if function_name == "find_research_directions":
function_response = TOOLS[function_name](
research_field=arguments.get("research_description"),
)
else:
function_response = TOOLS[function_name](
title=arguments.get("title"),
contributions=arguments.get("contributions"),
)
message_history.append(
{
"role": "function",
"name": function_name,
"content": f"{function_response}",
}
)
await cl.Message(
author=function_name,
content=str(function_response),
language='json',
indent=1,
).send()
cur_iter += 1 |