Spaces:
Running
Running
import gradio as gr | |
import os | |
import openai | |
from auto_backgrounds import generate_backgrounds, fake_generator, generate_draft | |
from utils.file_operations import hash_name | |
# todo: | |
# 2. update QQ group and Organization cards | |
# 4. add auto_polishing function | |
# 5. Use Completion to substitute some simple task (including: writing abstract, conclusion, generate keywords, generate figures...) | |
openai_key = os.getenv("OPENAI_API_KEY") | |
access_key_id = os.getenv('AWS_ACCESS_KEY_ID') | |
secret_access_key = os.getenv('AWS_SECRET_ACCESS_KEY') | |
if access_key_id is None or secret_access_key is None: | |
print("Access keys are not provided. Outputs cannot be saved to AWS Cloud Storage.\n") | |
IS_CACHE_AVAILABLE = False | |
else: | |
IS_CACHE_AVAILABLE = True | |
if openai_key is None: | |
print("OPENAI_API_KEY is not found in environment variables. The output may not be generated.\n") | |
IS_OPENAI_API_KEY_AVAILABLE = False | |
else: | |
openai.api_key = openai_key | |
try: | |
openai.Model.list() | |
IS_OPENAI_API_KEY_AVAILABLE = True | |
except Exception as e: | |
IS_OPENAI_API_KEY_AVAILABLE = False | |
def clear_inputs(text1, text2): | |
return "", "" | |
def wrapped_generator(title, description, openai_key = None, | |
template = "ICLR2022", | |
cache_mode = IS_CACHE_AVAILABLE, generator=None): | |
# if `cache_mode` is True, then follow the following steps: | |
# check if "title"+"description" have been generated before | |
# if so, download from the cloud storage, return it | |
# if not, generate the result. | |
if generator is None: | |
# todo: add a Dropdown to select which generator to use. | |
# generator = generate_backgrounds | |
generator = generate_draft | |
# generator = fake_generator | |
if openai_key is not None: | |
openai.api_key = openai_key | |
openai.Model.list() | |
if cache_mode: | |
from utils.storage import list_all_files, download_file, upload_file | |
# check if "title"+"description" have been generated before | |
input_dict = {"title": title, "description": description, "generator": "generate_draft"} #todo: modify here also | |
file_name = hash_name(input_dict) + ".zip" | |
file_list = list_all_files() | |
# print(f"{file_name} will be generated. Check the file list {file_list}") | |
if file_name in file_list: | |
# download from the cloud storage, return it | |
download_file(file_name) | |
return file_name | |
else: | |
# generate the result. | |
# output = fake_generate_backgrounds(title, description, openai_key) # todo: use `generator` to control which function to use. | |
output = generator(title, description, template, "gpt-4") | |
upload_file(output) | |
return output | |
else: | |
# output = fake_generate_backgrounds(title, description, openai_key) | |
output = generator(title, description, template, "gpt-4") | |
return output | |
theme = gr.themes.Monochrome(font=gr.themes.GoogleFont("Questrial")).set( | |
background_fill_primary='#E5E4E2', | |
background_fill_secondary = '#F6F6F6', | |
button_primary_background_fill="#281A39" | |
) | |
with gr.Blocks(theme=theme) as demo: | |
gr.Markdown(''' | |
# Auto-Draft: 文献整理辅助工具 | |
本Demo提供对[Auto-Draft](https://github.com/CCCBora/auto-draft)的auto_draft功能的测试。通过输入想要生成的论文名称(比如Playing atari with deep reinforcement learning),即可由AI辅助生成论文模板. | |
***2023-05-03 Update***: 在公开版本中为大家提供了输入OpenAI API Key的地址, 如果有GPT-4的API KEY的话可以在这里体验! | |
在这个Huggingface Organization里也提供一定额度的免费体验: [AUTO-ACADEMIC](https://huggingface.co/organizations/auto-academic/share/HPjgazDSlkwLNCWKiAiZoYtXaJIatkWDYM). | |
如果有更多想法和建议欢迎加入QQ群里交流, 如果我在Space里更新了Key我会第一时间通知大家. 群号: ***249738228***. | |
## 用法 | |
输入想要生成的论文名称(比如Playing Atari with Deep Reinforcement Learning), 点击Submit, 等待大概十分钟, 下载.zip格式的输出,在Overleaf上编译浏览. | |
''') | |
with gr.Row(): | |
with gr.Column(scale=2): | |
key = gr.Textbox(value=openai_key, lines=1, max_lines=1, label="OpenAI Key", visible=not IS_OPENAI_API_KEY_AVAILABLE) | |
# generator = gr.Dropdown(choices=["学术论文", "文献总结"], value="文献总结", label="Selection", info="目前支持生成'学术论文'和'文献总结'.", interactive=True) | |
title = gr.Textbox(value="Playing Atari with Deep Reinforcement Learning", lines=1, max_lines=1, label="Title", info="论文标题") | |
description = gr.Textbox(lines=5, label="Description (Optional)", visible=False) | |
with gr.Row(): | |
clear_button = gr.Button("Clear") | |
submit_button = gr.Button("Submit") | |
with gr.Column(scale=1): | |
style_mapping = {True: "color:white;background-color:green", False: "color:white;background-color:red"} #todo: to match website's style | |
availability_mapping = {True: "AVAILABLE", False: "NOT AVAILABLE"} | |
gr.Markdown(f'''## Huggingface Space Status | |
当`OpenAI API`显示AVAILABLE的时候这个Space可以直接使用. | |
当`OpenAI API`显示NOT AVAILABLE的时候这个Space可以通过在左侧输入OPENAI KEY来使用. 需要有GPT-4的API权限. | |
当`Cache`显示AVAILABLE的时候, 所有的输入和输出会被备份到我的云储存中. 显示NOT AVAILABLE的时候不影响实际使用. | |
`OpenAI API`: <span style="{style_mapping[IS_OPENAI_API_KEY_AVAILABLE]}">{availability_mapping[IS_OPENAI_API_KEY_AVAILABLE]}</span>. `Cache`: <span style="{style_mapping[IS_CACHE_AVAILABLE]}">{availability_mapping[IS_CACHE_AVAILABLE]}</span>.''') | |
file_output = gr.File(label="Output") | |
clear_button.click(fn=clear_inputs, inputs=[title, description], outputs=[title, description]) | |
submit_button.click(fn=wrapped_generator, inputs=[title, description, key], outputs=file_output) | |
demo.queue(concurrency_count=1, max_size=5, api_open=False) | |
demo.launch() | |