Spaces:
Running
Running
from utils.prompts import generate_paper_prompts, generate_keywords_prompts, generate_experiments_prompts, generate_bg_summary_prompts | |
from utils.gpt_interaction import get_responses, extract_responses, extract_keywords, extract_json | |
from utils.figures import generate_random_figures | |
import time | |
import os | |
from utils.prompts import KEYWORDS_SYSTEM, SECTION_GENERATION_SYSTEM | |
from utils.gpt_interaction import get_gpt_responses | |
import json | |
# three GPT-based content generator: | |
# 1. section_generation: used to generate main content of the paper | |
# 2. keywords_generation: used to generate a json output {key1: output1, key2: output2} for multiple purpose. | |
# 3. figure_generation: used to generate sample figures. | |
# all generator should return the token usage. | |
MAX_ATTEMPTS = 6 | |
def section_generation_bg(paper, section, save_to_path, model): | |
""" | |
The main pipeline of generating a section. | |
1. Generate prompts. | |
2. Get responses from AI assistant. | |
3. Extract the section text. | |
4. Save the text to .tex file. | |
:return usage | |
""" | |
print(f"Generating {section}...") | |
prompts = generate_bg_summary_prompts(paper, section) | |
gpt_response, usage = get_responses(prompts, model) | |
output = gpt_response # extract_responses(gpt_response) | |
paper["body"][section] = output | |
tex_file = os.path.join(save_to_path, f"{section}.tex") | |
# tex_file = save_to_path + f"/{section}.tex" | |
if section == "abstract": | |
with open(tex_file, "w") as f: | |
f.write(r"\begin{abstract}") | |
with open(tex_file, "a") as f: | |
f.write(output) | |
with open(tex_file, "a") as f: | |
f.write(r"\end{abstract}") | |
else: | |
with open(tex_file, "w") as f: | |
f.write(f"\section{{{section.upper()}}}\n") | |
with open(tex_file, "a") as f: | |
f.write(output) | |
time.sleep(5) | |
print(f"{section} has been generated. Saved to {tex_file}.") | |
return usage | |
def section_generation(paper, section, save_to_path, model, research_field="machine learning"): | |
""" | |
The main pipeline of generating a section. | |
1. Generate prompts. | |
2. Get responses from AI assistant. | |
3. Extract the section text. | |
4. Save the text to .tex file. | |
:return usage | |
""" | |
prompts = generate_paper_prompts(paper, section) | |
output, usage= get_gpt_responses(SECTION_GENERATION_SYSTEM.format(research_field=research_field), prompts, | |
model=model, temperature=0.4) | |
paper["body"][section] = output | |
tex_file = os.path.join(save_to_path, f"{section}.tex") | |
with open(tex_file, "w") as f: | |
f.write(output) | |
time.sleep(5) | |
return usage | |
def keywords_generation(input_dict, default_keywords=None): | |
''' | |
Input: | |
input_dict: a dictionary containing the title of a paper. | |
default_keywords: if anything went wrong, return this keywords. | |
Output: | |
a dictionary including all keywords and their importance score. | |
Input example: {"title": "The title of a Machine Learning Paper"} | |
Output Example: {"machine learning": 5, "reinforcement learning": 2} | |
''' | |
title = input_dict.get("title") | |
attempts_count = 0 | |
while (attempts_count < MAX_ATTEMPTS) and (title is not None): | |
try: | |
keywords, usage= get_gpt_responses(KEYWORDS_SYSTEM.format(min_refs_num=1, max_refs_num=10), title, | |
model="gpt-3.5-turbo", temperature=0.4) | |
print(keywords) | |
output = json.loads(keywords) | |
return output.keys(), usage | |
except json.decoder.JSONDecodeError: | |
attempts_count += 1 | |
time.sleep(10) | |
# Default references | |
print("Error: Keywords generation has failed. Return the default keywords.") | |
if default_keywords is None or isinstance(default_keywords, dict): | |
return {"machine learning": 10} | |
else: | |
return default_keywords | |
def figures_generation(paper, save_to_path, model): | |
# todo: this function is not complete. | |
prompts = generate_experiments_prompts(paper) | |
gpt_response, usage = get_responses(prompts, model) | |
list_of_methods = list(extract_json(gpt_response)) | |
generate_random_figures(list_of_methods, os.path.join(save_to_path, "comparison.png")) | |
return usage |