auto-draft / auto_backgrounds.py
shaocongma
bug fix.
c731c18
raw
history blame
14.5 kB
import json
import os.path
from utils.references import References
from utils.knowledge import Knowledge
from utils.file_operations import hash_name, make_archive, copy_templates
from utils.tex_processing import create_copies
from section_generator import section_generation # figures_generation, section_generation_bg, keywords_generation,
from utils.prompts import generate_paper_prompts
import logging
import time
from langchain.vectorstores import FAISS
from utils.gpt_interaction import GPTModel
from utils.prompts import SYSTEM
from models import EMBEDDINGS
TOTAL_TOKENS = 0
TOTAL_PROMPTS_TOKENS = 0
TOTAL_COMPLETION_TOKENS = 0
def log_usage(usage, generating_target, print_out=True):
global TOTAL_TOKENS
global TOTAL_PROMPTS_TOKENS
global TOTAL_COMPLETION_TOKENS
prompts_tokens = usage['prompt_tokens']
completion_tokens = usage['completion_tokens']
total_tokens = usage['total_tokens']
TOTAL_TOKENS += total_tokens
TOTAL_PROMPTS_TOKENS += prompts_tokens
TOTAL_COMPLETION_TOKENS += completion_tokens
message = f">>USAGE>> For generating {generating_target}, {total_tokens} tokens have been used " \
f"({prompts_tokens} for prompts; {completion_tokens} for completion). " \
f"{TOTAL_TOKENS} tokens have been used in total."
if print_out:
print(message)
logging.info(message)
def _generation_setup(title, description="", template="ICLR2022",
tldr=False, max_kw_refs=10, bib_refs=None, max_tokens_ref=2048, # generating references
knowledge_database=None, max_tokens_kd=2048, query_counts=10, # querying from knowledge database
debug=True):
"""
This function handles the setup process for paper generation; it contains three folds
1. Copy the template to the outputs folder. Create the log file `generation.log`
2. Collect references based on the given `title` and `description`
3. Generate the basic `paper` object (a dictionary)
Parameters:
title (str): The title of the paper.
description (str, optional): A short description or abstract for the paper. Defaults to an empty string.
template (str, optional): The template to be used for paper generation. Defaults to "ICLR2022".
tldr (bool, optional): A flag indicating whether a TL;DR (Too Long; Didn't Read) summary should be used
for the collected papers. Defaults to False.
max_kw_refs (int, optional): The maximum number of references that can be associated with each keyword.
Defaults to 10.
bib_refs (path to a bibtex file, optional).
Returns:
tuple: A tuple containing the following elements:
- paper (dict): A dictionary containing the generated paper information.
- destination_folder (str): The path to the destination folder where the generation log is saved.
- all_paper_ids (list): A list of all paper IDs collected for the references.
"""
# print("Generation setup...")
# paper = {}
# paper_body = {}
llm = GPTModel(model="gpt-3.5-turbo")
# Create a copy in the outputs folder.
bibtex_path, destination_folder = copy_templates(template, title)
logging.basicConfig(level=logging.INFO, filename=os.path.join(destination_folder, "generation.log"))
###################################################################################################################
# Generate contributions
###################################################################################################################
if description:
contributions = description
else:
try:
contributions, usage = llm(systems=SYSTEM["contributions"], prompts=title, return_json=True)
contributions = [f"Contribution {idx}: {contributions[contribution]['statement']}\n" \
f"Novelty of Contribution {idx}: {contributions[contribution]['reason']}\n"
for idx, contribution in enumerate(contributions)]
contributions = "".join(contributions)
log_usage(usage, "contributions")
except RuntimeError:
if debug:
raise RuntimeError("Failed to generate contributions.")
else:
print("Failed to generate contributions. Use empty contributions.")
contributions = ""
print("Contributions:\n{}".format(contributions))
###################################################################################################################
# Generate references
###################################################################################################################
# input_dict = {"title": title, "description": description}
# keywords, usage = keywords_generation(input_dict)
# log_usage(usage, "keywords")
try:
keywords, usage = llm(systems=SYSTEM["keywords"], prompts=title, return_json=True)
log_usage(usage, "keywords")
keywords = {keyword: max_kw_refs for keyword in keywords}
except RuntimeError:
if debug:
raise RuntimeError("Failed to generate keywords.")
else:
print("Failed to generate keywords. Use default keywords.")
keywords = {"machine learning": max_kw_refs, "artificial intelligence": max_kw_refs} # DEFAULT KEYWORDS
# generate keywords dictionary
# keywords = {keyword: max_kw_refs for keyword in keywords}
print("Keywords: \n", keywords)
# todo: in some rare situations, collected papers will be an empty list. handle this issue
ref = References(title, bib_refs)
ref.collect_papers(keywords, tldr=tldr)
references = ref.to_prompts(max_tokens=max_tokens_ref)
all_paper_ids = ref.to_bibtex(bibtex_path)
###################################################################################################################
# Generate domain knowledge
###################################################################################################################
prompts = f"Title: {title}\n Contributions: {contributions}"
preliminaries_kw, _ = llm(systems=SYSTEM["preliminaries"], prompts=prompts)
# check if the database exists or not
db_path = f"knowledge_databases/{knowledge_database}"
db_config_path = os.path.join(db_path, "db_meta.json")
db_index_path = os.path.join(db_path, "faiss_index")
if os.path.isdir(db_path):
try:
# load configuration file
with open(db_config_path, "r", encoding="utf-8") as f:
db_config = json.load(f)
model_name = db_config["embedding_model"]
embeddings = EMBEDDINGS[model_name]
db = FAISS.load_local(db_index_path, embeddings)
knowledge = Knowledge(db=db)
knowledge.collect_knowledge(preliminaries_kw, max_query=query_counts)
domain_knowledge = knowledge.to_prompts(max_tokens_kd)
except Exception as e:
if debug:
raise RuntimeError(f"Failed to query from FAISS. Error {e}.")
else:
print(f"Failed to query from FAISS. Error {e}. Use empty domain knowledge instead.")
domain_knowledge = ""
else:
print("Selected database doesn't exist or no database is selected.")
domain_knowledge = ""
###################################################################################################################
# Generate necessary media
###################################################################################################################
prompts = f"Title: {title}\n Contributions: {contributions}"
try:
components, usage = llm(systems=SYSTEM["components"], prompts=prompts, return_json=True)
log_usage(usage, "media")
except RuntimeError:
if debug:
raise RuntimeError("Failed to generate media.")
else:
print("Failed to generate media. Use default media.")
components = {}
print(f"The paper information has been initialized. References are saved to {bibtex_path}.")
paper = {}
paper_body = {}
paper["title"] = title
paper["description"] = contributions
paper["references"] = references
paper["body"] = paper_body
paper["bibtex"] = bibtex_path
paper["domain_knowledge"] = domain_knowledge
paper["components"] = components
# print(json.dumps(paper, indent=4))
return paper, destination_folder, all_paper_ids
# todo: use `all_paper_ids` to check if all citations are in this list
def generate_backgrounds(title, description="", template="ICLR2022", model="gpt-4"):
# todo: to match the current generation setup
paper, destination_folder, _ = _generation_setup(title, description, template, model)
for section in ["introduction", "related works", "backgrounds"]:
try:
usage = section_generation_bg(paper, section, destination_folder, model=model)
log_usage(usage, section)
except Exception as e:
message = f"Failed to generate {section}. {type(e).__name__} was raised: {e}"
print(message)
logging.info(message)
print(f"The paper '{title}' has been generated. Saved to {destination_folder}.")
input_dict = {"title": title, "description": description, "generator": "generate_backgrounds"}
filename = hash_name(input_dict) + ".zip"
return make_archive(destination_folder, filename)
def generate_draft(title, description="", # main input
tldr=True, max_kw_refs=10, bib_refs=None, max_tokens_ref=2048, # references
knowledge_database=None, max_tokens_kd=2048, query_counts=10, # domain knowledge
sections=None, model="gpt-4", template="ICLR2022", prompts_mode=False, # outputs parameters
):
"""
This function generates a draft paper using the provided information; it contains three steps: 1. Pre-processing:
Initializes the setup for paper generation and filters the sections to be included in the paper. 2. Processing:
Generates each section of the paper. 3. Post-processing: Creates backup copies of the paper and returns the paper
in a zipped format.
Parameters:
title (str): The title of the paper.
description (str, optional): A short description or abstract for the paper. Defaults to an empty string.
template (str, optional): The template to be used for paper generation. Defaults to "ICLR2022".
tldr (bool, optional): A flag indicating whether a TL;DR (Too Long; Didn't Read) summary should be used
for the collected papers. Defaults to True.
max_kw_refs (int, optional): The maximum number of references that can be associated with each keyword.
Defaults to 10.
sections (list, optional): The sections to be included in the paper. If not provided, all the standard
sections are included.
bib_refs (path to a bibtex file, optional).
model (str, optional): The language model to be used for paper generation. Defaults to "gpt-4".
Returns:
str: The path to the zipped file containing the generated paper and associated files.
Note: The function also handles errors that occur during section generation and retries a maximum of 4 times
before proceeding.
"""
def _filter_sections(sections):
ordered_sections = ["introduction", "related works", "backgrounds", "methodology", "experiments", "conclusion",
"abstract"]
return [section for section in ordered_sections if section in sections]
# pre-processing `sections` parameter;
print("================START================")
print(f"Generating the paper '{title}'.")
print("================PRE-PROCESSING================")
# make `sections` in a correct order
if sections is None:
sections = ["introduction", "related works", "backgrounds", "methodology", "experiments", "conclusion",
"abstract"]
else:
sections = _filter_sections(sections)
paper, destination_folder, _ = _generation_setup(title, description, template, tldr, max_kw_refs, bib_refs,
max_tokens_ref=max_tokens_ref, max_tokens_kd=max_tokens_kd,
query_counts=query_counts,
knowledge_database=knowledge_database)
# main components
prompts_dict = {}
print(f"================PROCESSING================")
for section in sections:
if prompts_mode:
prompts = generate_paper_prompts(paper, section)
prompts_dict[section] = prompts
continue
print(f"Generate {section} part...")
max_attempts = 4
attempts_count = 0
while attempts_count < max_attempts:
try:
usage = section_generation(paper, section, destination_folder, model=model)
print(f"{section} part has been generated. ")
log_usage(usage, section)
break
except Exception as e:
message = f"Failed to generate {section}. {type(e).__name__} was raised: {e}\n"
print(message)
logging.info(message)
attempts_count += 1
time.sleep(15)
# post-processing
print("================POST-PROCESSING================")
create_copies(destination_folder)
input_dict = {"title": title, "description": description, "generator": "generate_draft"}
filename = hash_name(input_dict) + ".zip"
print("\nMission completed.\n")
if prompts_mode:
filename = hash_name(input_dict) + ".json"
with open(filename, "w") as f:
json.dump(prompts_dict, f)
return filename
else:
return make_archive(destination_folder, filename)
if __name__ == "__main__":
import openai
openai.api_key = os.getenv("OPENAI_API_KEY")
target_title = "Playing Atari with Decentralized Reinforcement Learning"
output = generate_draft(target_title, knowledge_database="ml_textbook_test")
print(output)