Spaces:
Running
Running
import json | |
import os.path | |
from utils.references import References | |
from utils.knowledge import Knowledge | |
from utils.file_operations import hash_name, make_archive, copy_templates | |
from utils.tex_processing import create_copies | |
from section_generator import section_generation # figures_generation, section_generation_bg, keywords_generation, | |
from utils.prompts import generate_paper_prompts | |
import logging | |
import time | |
from langchain.vectorstores import FAISS | |
from utils.gpt_interaction import GPTModel | |
from utils.prompts import SYSTEM | |
from models import EMBEDDINGS | |
TOTAL_TOKENS = 0 | |
TOTAL_PROMPTS_TOKENS = 0 | |
TOTAL_COMPLETION_TOKENS = 0 | |
def log_usage(usage, generating_target, print_out=True): | |
global TOTAL_TOKENS | |
global TOTAL_PROMPTS_TOKENS | |
global TOTAL_COMPLETION_TOKENS | |
prompts_tokens = usage['prompt_tokens'] | |
completion_tokens = usage['completion_tokens'] | |
total_tokens = usage['total_tokens'] | |
TOTAL_TOKENS += total_tokens | |
TOTAL_PROMPTS_TOKENS += prompts_tokens | |
TOTAL_COMPLETION_TOKENS += completion_tokens | |
message = f">>USAGE>> For generating {generating_target}, {total_tokens} tokens have been used " \ | |
f"({prompts_tokens} for prompts; {completion_tokens} for completion). " \ | |
f"{TOTAL_TOKENS} tokens have been used in total." | |
if print_out: | |
print(message) | |
logging.info(message) | |
def _generation_setup(title, description="", template="ICLR2022", | |
tldr=False, max_kw_refs=10, bib_refs=None, max_tokens_ref=2048, # generating references | |
knowledge_database=None, max_tokens_kd=2048, query_counts=10, # querying from knowledge database | |
debug=True): | |
""" | |
This function handles the setup process for paper generation; it contains three folds | |
1. Copy the template to the outputs folder. Create the log file `generation.log` | |
2. Collect references based on the given `title` and `description` | |
3. Generate the basic `paper` object (a dictionary) | |
Parameters: | |
title (str): The title of the paper. | |
description (str, optional): A short description or abstract for the paper. Defaults to an empty string. | |
template (str, optional): The template to be used for paper generation. Defaults to "ICLR2022". | |
tldr (bool, optional): A flag indicating whether a TL;DR (Too Long; Didn't Read) summary should be used | |
for the collected papers. Defaults to False. | |
max_kw_refs (int, optional): The maximum number of references that can be associated with each keyword. | |
Defaults to 10. | |
bib_refs (path to a bibtex file, optional). | |
Returns: | |
tuple: A tuple containing the following elements: | |
- paper (dict): A dictionary containing the generated paper information. | |
- destination_folder (str): The path to the destination folder where the generation log is saved. | |
- all_paper_ids (list): A list of all paper IDs collected for the references. | |
""" | |
# print("Generation setup...") | |
# paper = {} | |
# paper_body = {} | |
llm = GPTModel(model="gpt-3.5-turbo") | |
# Create a copy in the outputs folder. | |
bibtex_path, destination_folder = copy_templates(template, title) | |
logging.basicConfig(level=logging.INFO, filename=os.path.join(destination_folder, "generation.log")) | |
################################################################################################################### | |
# Generate contributions | |
################################################################################################################### | |
if description: | |
contributions = description | |
else: | |
try: | |
contributions, usage = llm(systems=SYSTEM["contributions"], prompts=title, return_json=True) | |
contributions = [f"Contribution {idx}: {contributions[contribution]['statement']}\n" \ | |
f"Novelty of Contribution {idx}: {contributions[contribution]['reason']}\n" | |
for idx, contribution in enumerate(contributions)] | |
contributions = "".join(contributions) | |
log_usage(usage, "contributions") | |
except RuntimeError: | |
if debug: | |
raise RuntimeError("Failed to generate contributions.") | |
else: | |
print("Failed to generate contributions. Use empty contributions.") | |
contributions = "" | |
print("Contributions:\n{}".format(contributions)) | |
################################################################################################################### | |
# Generate references | |
################################################################################################################### | |
# input_dict = {"title": title, "description": description} | |
# keywords, usage = keywords_generation(input_dict) | |
# log_usage(usage, "keywords") | |
try: | |
keywords, usage = llm(systems=SYSTEM["keywords"], prompts=title, return_json=True) | |
log_usage(usage, "keywords") | |
keywords = {keyword: max_kw_refs for keyword in keywords} | |
except RuntimeError: | |
if debug: | |
raise RuntimeError("Failed to generate keywords.") | |
else: | |
print("Failed to generate keywords. Use default keywords.") | |
keywords = {"machine learning": max_kw_refs, "artificial intelligence": max_kw_refs} # DEFAULT KEYWORDS | |
# generate keywords dictionary | |
# keywords = {keyword: max_kw_refs for keyword in keywords} | |
print("Keywords: \n", keywords) | |
# todo: in some rare situations, collected papers will be an empty list. handle this issue | |
ref = References(title, bib_refs) | |
ref.collect_papers(keywords, tldr=tldr) | |
references = ref.to_prompts(max_tokens=max_tokens_ref) | |
all_paper_ids = ref.to_bibtex(bibtex_path) | |
################################################################################################################### | |
# Generate domain knowledge | |
################################################################################################################### | |
prompts = f"Title: {title}\n Contributions: {contributions}" | |
preliminaries_kw, _ = llm(systems=SYSTEM["preliminaries"], prompts=prompts) | |
# check if the database exists or not | |
db_path = f"knowledge_databases/{knowledge_database}" | |
db_config_path = os.path.join(db_path, "db_meta.json") | |
db_index_path = os.path.join(db_path, "faiss_index") | |
if os.path.isdir(db_path): | |
try: | |
# load configuration file | |
with open(db_config_path, "r", encoding="utf-8") as f: | |
db_config = json.load(f) | |
model_name = db_config["embedding_model"] | |
embeddings = EMBEDDINGS[model_name] | |
db = FAISS.load_local(db_index_path, embeddings) | |
knowledge = Knowledge(db=db) | |
knowledge.collect_knowledge(preliminaries_kw, max_query=query_counts) | |
domain_knowledge = knowledge.to_prompts(max_tokens_kd) | |
except Exception as e: | |
if debug: | |
raise RuntimeError(f"Failed to query from FAISS. Error {e}.") | |
else: | |
print(f"Failed to query from FAISS. Error {e}. Use empty domain knowledge instead.") | |
domain_knowledge = "" | |
else: | |
print("Selected database doesn't exist or no database is selected.") | |
domain_knowledge = "" | |
################################################################################################################### | |
# Generate necessary media | |
################################################################################################################### | |
prompts = f"Title: {title}\n Contributions: {contributions}" | |
try: | |
components, usage = llm(systems=SYSTEM["components"], prompts=prompts, return_json=True) | |
log_usage(usage, "media") | |
except RuntimeError: | |
if debug: | |
raise RuntimeError("Failed to generate media.") | |
else: | |
print("Failed to generate media. Use default media.") | |
components = {} | |
print(f"The paper information has been initialized. References are saved to {bibtex_path}.") | |
paper = {} | |
paper_body = {} | |
paper["title"] = title | |
paper["description"] = contributions | |
paper["references"] = references | |
paper["body"] = paper_body | |
paper["bibtex"] = bibtex_path | |
paper["domain_knowledge"] = domain_knowledge | |
paper["components"] = components | |
# print(json.dumps(paper, indent=4)) | |
return paper, destination_folder, all_paper_ids | |
# todo: use `all_paper_ids` to check if all citations are in this list | |
def generate_backgrounds(title, description="", template="ICLR2022", model="gpt-4"): | |
# todo: to match the current generation setup | |
paper, destination_folder, _ = _generation_setup(title, description, template, model) | |
for section in ["introduction", "related works", "backgrounds"]: | |
try: | |
usage = section_generation_bg(paper, section, destination_folder, model=model) | |
log_usage(usage, section) | |
except Exception as e: | |
message = f"Failed to generate {section}. {type(e).__name__} was raised: {e}" | |
print(message) | |
logging.info(message) | |
print(f"The paper '{title}' has been generated. Saved to {destination_folder}.") | |
input_dict = {"title": title, "description": description, "generator": "generate_backgrounds"} | |
filename = hash_name(input_dict) + ".zip" | |
return make_archive(destination_folder, filename) | |
def generate_draft(title, description="", # main input | |
tldr=True, max_kw_refs=10, bib_refs=None, max_tokens_ref=2048, # references | |
knowledge_database=None, max_tokens_kd=2048, query_counts=10, # domain knowledge | |
sections=None, model="gpt-4", template="ICLR2022", prompts_mode=False, # outputs parameters | |
): | |
""" | |
This function generates a draft paper using the provided information; it contains three steps: 1. Pre-processing: | |
Initializes the setup for paper generation and filters the sections to be included in the paper. 2. Processing: | |
Generates each section of the paper. 3. Post-processing: Creates backup copies of the paper and returns the paper | |
in a zipped format. | |
Parameters: | |
title (str): The title of the paper. | |
description (str, optional): A short description or abstract for the paper. Defaults to an empty string. | |
template (str, optional): The template to be used for paper generation. Defaults to "ICLR2022". | |
tldr (bool, optional): A flag indicating whether a TL;DR (Too Long; Didn't Read) summary should be used | |
for the collected papers. Defaults to True. | |
max_kw_refs (int, optional): The maximum number of references that can be associated with each keyword. | |
Defaults to 10. | |
sections (list, optional): The sections to be included in the paper. If not provided, all the standard | |
sections are included. | |
bib_refs (path to a bibtex file, optional). | |
model (str, optional): The language model to be used for paper generation. Defaults to "gpt-4". | |
Returns: | |
str: The path to the zipped file containing the generated paper and associated files. | |
Note: The function also handles errors that occur during section generation and retries a maximum of 4 times | |
before proceeding. | |
""" | |
def _filter_sections(sections): | |
ordered_sections = ["introduction", "related works", "backgrounds", "methodology", "experiments", "conclusion", | |
"abstract"] | |
return [section for section in ordered_sections if section in sections] | |
# pre-processing `sections` parameter; | |
print("================START================") | |
print(f"Generating the paper '{title}'.") | |
print("================PRE-PROCESSING================") | |
# make `sections` in a correct order | |
if sections is None: | |
sections = ["introduction", "related works", "backgrounds", "methodology", "experiments", "conclusion", | |
"abstract"] | |
else: | |
sections = _filter_sections(sections) | |
paper, destination_folder, _ = _generation_setup(title, description, template, tldr, max_kw_refs, bib_refs, | |
max_tokens_ref=max_tokens_ref, max_tokens_kd=max_tokens_kd, | |
query_counts=query_counts, | |
knowledge_database=knowledge_database) | |
# main components | |
prompts_dict = {} | |
print(f"================PROCESSING================") | |
for section in sections: | |
if prompts_mode: | |
prompts = generate_paper_prompts(paper, section) | |
prompts_dict[section] = prompts | |
continue | |
print(f"Generate {section} part...") | |
max_attempts = 4 | |
attempts_count = 0 | |
while attempts_count < max_attempts: | |
try: | |
usage = section_generation(paper, section, destination_folder, model=model) | |
print(f"{section} part has been generated. ") | |
log_usage(usage, section) | |
break | |
except Exception as e: | |
message = f"Failed to generate {section}. {type(e).__name__} was raised: {e}\n" | |
print(message) | |
logging.info(message) | |
attempts_count += 1 | |
time.sleep(15) | |
# post-processing | |
print("================POST-PROCESSING================") | |
create_copies(destination_folder) | |
input_dict = {"title": title, "description": description, "generator": "generate_draft"} | |
filename = hash_name(input_dict) + ".zip" | |
print("\nMission completed.\n") | |
if prompts_mode: | |
filename = hash_name(input_dict) + ".json" | |
with open(filename, "w") as f: | |
json.dump(prompts_dict, f) | |
return filename | |
else: | |
return make_archive(destination_folder, filename) | |
if __name__ == "__main__": | |
import openai | |
openai.api_key = os.getenv("OPENAI_API_KEY") | |
target_title = "Playing Atari with Decentralized Reinforcement Learning" | |
output = generate_draft(target_title, knowledge_database="ml_textbook_test") | |
print(output) | |