Spaces:
Running
Running
sc_ma
commited on
Commit
•
8aec19e
1
Parent(s):
caa5017
Add webui (testing).
Browse files- app.py +37 -0
- auto_backgrounds.py +15 -2
- auto_draft.py +13 -1
- utils/references.py +19 -1
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import openai
|
3 |
+
from auto_backgrounds import generate_backgrounds
|
4 |
+
|
5 |
+
# todo: 1. remove repeated entry in bibfile (go to references.py)
|
6 |
+
# 2. (maybe) multiple commas error (see Overleaf)
|
7 |
+
# 3. create a huggingface space. test it using multiple devices!
|
8 |
+
# 4. further polish auto_backgrounds.py. Make backgrounds have multiple subsection.
|
9 |
+
# 5. Design a good layout of huggingface space.
|
10 |
+
def generate_backgrounds(t1, t2):
|
11 |
+
return "README.md"
|
12 |
+
|
13 |
+
def clear_inputs(text1, text2):
|
14 |
+
return ("", "")
|
15 |
+
|
16 |
+
with gr.Blocks() as demo:
|
17 |
+
gr.Markdown('''
|
18 |
+
# Auto-Draft: 论文结构辅助工具
|
19 |
+
|
20 |
+
用法: 输入任意论文标题, 点击Submit, 等待大概十分钟, 下载output.zip.
|
21 |
+
''')
|
22 |
+
with gr.Row():
|
23 |
+
with gr.Column():
|
24 |
+
title = gr.Textbox(value="Playing Atari Game with Deep Reinforcement Learning", lines=1, max_lines=1, label="Title")
|
25 |
+
description = gr.Textbox(lines=5, label="Description (Optional)")
|
26 |
+
|
27 |
+
with gr.Row():
|
28 |
+
clear_button = gr.Button("Clear")
|
29 |
+
submit_button = gr.Button("Submit")
|
30 |
+
with gr.Column():
|
31 |
+
file_output = gr.outputs.File()
|
32 |
+
|
33 |
+
clear_button.click(fn=clear_inputs, inputs=[title, description], outputs=[title, description])
|
34 |
+
submit_button.click(fn=generate_backgrounds, inputs=[title, description], outputs=file_output)
|
35 |
+
|
36 |
+
demo.queue(concurrency_count=1, max_size=5, api_open=False)
|
37 |
+
demo.launch()
|
auto_backgrounds.py
CHANGED
@@ -6,6 +6,7 @@ import datetime
|
|
6 |
import shutil
|
7 |
import time
|
8 |
import logging
|
|
|
9 |
|
10 |
TOTAL_TOKENS = 0
|
11 |
TOTAL_PROMPTS_TOKENS = 0
|
@@ -31,6 +32,16 @@ def log_usage(usage, generating_target, print_out=True):
|
|
31 |
print(message)
|
32 |
logging.info(message)
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
def pipeline(paper, section, save_to_path, model):
|
35 |
"""
|
36 |
The main pipeline of generating a section.
|
@@ -55,10 +66,10 @@ def pipeline(paper, section, save_to_path, model):
|
|
55 |
f.write(r"\end{abstract}")
|
56 |
else:
|
57 |
with open(tex_file, "w") as f:
|
58 |
-
f.write(f"\section{{{section}}}\n")
|
59 |
with open(tex_file, "a") as f:
|
60 |
f.write(output)
|
61 |
-
time.sleep(
|
62 |
print(f"{section} has been generated. Saved to {tex_file}.")
|
63 |
return usage
|
64 |
|
@@ -106,6 +117,8 @@ def generate_backgrounds(title, description="", template="ICLR2022", model="gpt-
|
|
106 |
except Exception as e:
|
107 |
print(f"Failed to generate {section} due to the error: {e}")
|
108 |
print(f"The paper {title} has been generated. Saved to {save_to_path}.")
|
|
|
|
|
109 |
|
110 |
if __name__ == "__main__":
|
111 |
title = "Reinforcement Learning"
|
|
|
6 |
import shutil
|
7 |
import time
|
8 |
import logging
|
9 |
+
import os
|
10 |
|
11 |
TOTAL_TOKENS = 0
|
12 |
TOTAL_PROMPTS_TOKENS = 0
|
|
|
32 |
print(message)
|
33 |
logging.info(message)
|
34 |
|
35 |
+
def make_archive(source, destination):
|
36 |
+
base = os.path.basename(destination)
|
37 |
+
name = base.split('.')[0]
|
38 |
+
format = base.split('.')[1]
|
39 |
+
archive_from = os.path.dirname(source)
|
40 |
+
archive_to = os.path.basename(source.strip(os.sep))
|
41 |
+
shutil.make_archive(name, format, archive_from, archive_to)
|
42 |
+
shutil.move('%s.%s'%(name,format), destination)
|
43 |
+
return destination
|
44 |
+
|
45 |
def pipeline(paper, section, save_to_path, model):
|
46 |
"""
|
47 |
The main pipeline of generating a section.
|
|
|
66 |
f.write(r"\end{abstract}")
|
67 |
else:
|
68 |
with open(tex_file, "w") as f:
|
69 |
+
f.write(f"\section{{{section.upper()}}}\n")
|
70 |
with open(tex_file, "a") as f:
|
71 |
f.write(output)
|
72 |
+
time.sleep(5)
|
73 |
print(f"{section} has been generated. Saved to {tex_file}.")
|
74 |
return usage
|
75 |
|
|
|
117 |
except Exception as e:
|
118 |
print(f"Failed to generate {section} due to the error: {e}")
|
119 |
print(f"The paper {title} has been generated. Saved to {save_to_path}.")
|
120 |
+
# shutil.make_archive("output.zip", 'zip', save_to_path)
|
121 |
+
return make_archive(save_to_path, save_to_path+"output.zip")
|
122 |
|
123 |
if __name__ == "__main__":
|
124 |
title = "Reinforcement Learning"
|
auto_draft.py
CHANGED
@@ -7,11 +7,22 @@ import datetime
|
|
7 |
import shutil
|
8 |
import time
|
9 |
import logging
|
|
|
10 |
|
11 |
TOTAL_TOKENS = 0
|
12 |
TOTAL_PROMPTS_TOKENS = 0
|
13 |
TOTAL_COMPLETION_TOKENS = 0
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
def log_usage(usage, generating_target, print_out=True):
|
17 |
global TOTAL_TOKENS
|
@@ -59,7 +70,7 @@ def pipeline(paper, section, save_to_path, model):
|
|
59 |
f.write(f"\section{{{section}}}\n")
|
60 |
with open(tex_file, "a") as f:
|
61 |
f.write(output)
|
62 |
-
time.sleep(
|
63 |
print(f"{section} has been generated. Saved to {tex_file}.")
|
64 |
return usage
|
65 |
|
@@ -121,6 +132,7 @@ def generate_draft(title, description="", template="ICLR2022", model="gpt-4"):
|
|
121 |
except Exception as e:
|
122 |
print(f"Failed to generate {section} due to the error: {e}")
|
123 |
print(f"The paper {title} has been generated. Saved to {save_to_path}.")
|
|
|
124 |
|
125 |
if __name__ == "__main__":
|
126 |
# title = "Training Adversarial Generative Neural Network with Adaptive Dropout Rate"
|
|
|
7 |
import shutil
|
8 |
import time
|
9 |
import logging
|
10 |
+
import os
|
11 |
|
12 |
TOTAL_TOKENS = 0
|
13 |
TOTAL_PROMPTS_TOKENS = 0
|
14 |
TOTAL_COMPLETION_TOKENS = 0
|
15 |
|
16 |
+
def make_archive(source, destination):
|
17 |
+
base = os.path.basename(destination)
|
18 |
+
name = base.split('.')[0]
|
19 |
+
format = base.split('.')[1]
|
20 |
+
archive_from = os.path.dirname(source)
|
21 |
+
archive_to = os.path.basename(source.strip(os.sep))
|
22 |
+
shutil.make_archive(name, format, archive_from, archive_to)
|
23 |
+
shutil.move('%s.%s'%(name,format), destination)
|
24 |
+
return destination
|
25 |
+
|
26 |
|
27 |
def log_usage(usage, generating_target, print_out=True):
|
28 |
global TOTAL_TOKENS
|
|
|
70 |
f.write(f"\section{{{section}}}\n")
|
71 |
with open(tex_file, "a") as f:
|
72 |
f.write(output)
|
73 |
+
time.sleep(5)
|
74 |
print(f"{section} has been generated. Saved to {tex_file}.")
|
75 |
return usage
|
76 |
|
|
|
132 |
except Exception as e:
|
133 |
print(f"Failed to generate {section} due to the error: {e}")
|
134 |
print(f"The paper {title} has been generated. Saved to {save_to_path}.")
|
135 |
+
return make_archive(save_to_path, save_to_path+"output.zip")
|
136 |
|
137 |
if __name__ == "__main__":
|
138 |
# title = "Training Adversarial Generative Neural Network with Adaptive Dropout Rate"
|
utils/references.py
CHANGED
@@ -49,7 +49,14 @@ def _collect_papers_arxiv(keyword, counts=3):
|
|
49 |
# Extract the year
|
50 |
published = entry.find(f"{namespace}published").text
|
51 |
year = published.split("-")[0]
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
journal = f"arXiv preprint arXiv:{arxiv_id}"
|
54 |
result = {
|
55 |
"paper_id": arxiv_id,
|
@@ -93,6 +100,17 @@ class References:
|
|
93 |
for key, counts in keywords_dict.items():
|
94 |
self.papers = self.papers + process(key, counts)
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
def to_bibtex(self, path_to_bibtex="ref.bib"):
|
97 |
"""
|
98 |
Turn the saved paper list into bibtex file "ref.bib". Return a list of all `paper_id`.
|
|
|
49 |
# Extract the year
|
50 |
published = entry.find(f"{namespace}published").text
|
51 |
year = published.split("-")[0]
|
52 |
+
|
53 |
+
founds = re.search(r'\d+\.\d+', link)
|
54 |
+
if founds is None:
|
55 |
+
# some links are not standard; such as "https://arxiv.org/abs/cs/0603127v1".
|
56 |
+
# will be solved in the future.
|
57 |
+
continue
|
58 |
+
else:
|
59 |
+
arxiv_id = founds.group(0)
|
60 |
journal = f"arXiv preprint arXiv:{arxiv_id}"
|
61 |
result = {
|
62 |
"paper_id": arxiv_id,
|
|
|
100 |
for key, counts in keywords_dict.items():
|
101 |
self.papers = self.papers + process(key, counts)
|
102 |
|
103 |
+
# TODO: remove repeated entries
|
104 |
+
# test this
|
105 |
+
seen = set()
|
106 |
+
papers = []
|
107 |
+
for paper in self.papers:
|
108 |
+
paper_id = paper["paper_id"]
|
109 |
+
if paper_id not in seen:
|
110 |
+
seen.add(paper_id)
|
111 |
+
papers.append(paper)
|
112 |
+
self.papers = papers
|
113 |
+
|
114 |
def to_bibtex(self, path_to_bibtex="ref.bib"):
|
115 |
"""
|
116 |
Turn the saved paper list into bibtex file "ref.bib". Return a list of all `paper_id`.
|