shaocongma commited on
Commit
af971a8
·
1 Parent(s): 9ec586e

fix knowledge database error.

Browse files

support OPENAI_API_BASE.
backup all generated files when possible.

app.py CHANGED
@@ -1,27 +1,44 @@
 
1
  import gradio as gr
2
  import os
3
  import openai
4
  from auto_backgrounds import generate_backgrounds, generate_draft
5
- from utils.file_operations import hash_name, list_folders
6
- from references_generator import generate_top_k_references
7
 
8
  # todo:
9
  # 6. get logs when the procedure is not completed. *
10
  # 7. 自己的文件库; 更多的prompts
11
  # 2. 实现别的功能
12
- # 3. Check API Key GPT-4 Support.
13
  # future:
14
  # generation.log sometimes disappears (ignore this)
15
  # 1. Check if there are any duplicated citations
16
  # 2. Remove potential thebibliography and bibitem in .tex file
17
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  #######################################################################################################################
19
  # Check if openai and cloud storage available
20
  #######################################################################################################################
21
  openai_key = os.getenv("OPENAI_API_KEY")
 
 
 
 
 
22
  access_key_id = os.getenv('AWS_ACCESS_KEY_ID')
23
  secret_access_key = os.getenv('AWS_SECRET_ACCESS_KEY')
24
- GPT4_ENABLE = os.getenv("GPT4_ENABLE") # by default None.
25
  if access_key_id is None or secret_access_key is None:
26
  print("Access keys are not provided. Outputs cannot be saved to AWS Cloud Storage.\n")
27
  IS_CACHE_AVAILABLE = False
@@ -48,6 +65,13 @@ DEFAULT_SECTIONS = ["introduction", "related works", "backgrounds", "methodology
48
 
49
  MODEL_LIST = ['gpt-4', 'gpt-3.5-turbo', 'gpt-3.5-turbo-16k']
50
 
 
 
 
 
 
 
 
51
  #######################################################################################################################
52
  # Load the list of templates & knowledge databases
53
  #######################################################################################################################
@@ -140,7 +164,6 @@ def clear_inputs(*args):
140
  def clear_inputs_refs(*args):
141
  return "", 5
142
 
143
-
144
  def wrapped_generator(
145
  paper_title, paper_description, # main input
146
  openai_api_key=None, openai_url=None, # key
@@ -149,10 +172,8 @@ def wrapped_generator(
149
  paper_template="ICLR2022", selected_sections=None, model="gpt-4", prompts_mode=False, # outputs parameters
150
  cache_mode=IS_CACHE_AVAILABLE # handle cache mode
151
  ):
152
- # if `cache_mode` is True, then follow the following steps:
153
- # check if "title"+"description" have been generated before
154
- # if so, download from the cloud storage, return it
155
- # if not, generate the result.
156
  if bib_refs is not None:
157
  bib_refs = bib_refs.name
158
  if openai_api_key is not None:
@@ -161,19 +182,6 @@ def wrapped_generator(
161
  openai.Model.list()
162
  except Exception as e:
163
  raise gr.Error(f"Key错误. Error: {e}")
164
-
165
- if cache_mode:
166
- from utils.storage import list_all_files, download_file
167
- # check if "title"+"description" have been generated before
168
- input_dict = {"title": paper_title, "description": paper_description,
169
- "generator": "generate_draft"}
170
- file_name = hash_name(input_dict) + ".zip"
171
- file_list = list_all_files()
172
- # print(f"{file_name} will be generated. Check the file list {file_list}")
173
- if file_name in file_list:
174
- # download from the cloud storage, return it
175
- download_file(file_name)
176
- return file_name
177
  try:
178
  output = generate_draft(
179
  paper_title, description=paper_description, # main input
@@ -183,19 +191,12 @@ def wrapped_generator(
183
  )
184
  if cache_mode:
185
  from utils.storage import upload_file
186
- upload_file(output)
187
  except Exception as e:
188
  raise gr.Error(f"生成失败. Error: {e}")
189
  return output
190
 
191
 
192
- def wrapped_references_generator(paper_title, num_refs, openai_api_key=None):
193
- if openai_api_key is not None:
194
- openai.api_key = openai_api_key
195
- openai.Model.list()
196
- return generate_top_k_references(paper_title, top_k=num_refs)
197
-
198
-
199
  with gr.Blocks(theme=theme) as demo:
200
  gr.Markdown(ANNOUNCEMENT)
201
 
@@ -271,9 +272,6 @@ with gr.Blocks(theme=theme) as demo:
271
  max_tokens_kd_slider = gr.Slider(minimum=256, maximum=8192, value=2048, step=2,
272
  interactive=True, label="MAX_TOKENS",
273
  info="知识库内容占用Prompts中的Token数")
274
- # template = gr.Dropdown(label="Template", choices=ALL_TEMPLATES, value="Default",
275
- # interactive=True,
276
- # info="生成论文的参考模板.")
277
  domain_knowledge = gr.Dropdown(label="预载知识库",
278
  choices=ALL_DATABASES,
279
  value="(None)",
@@ -283,18 +281,6 @@ with gr.Blocks(theme=theme) as demo:
283
  with gr.Row():
284
  clear_button_pp = gr.Button("Clear")
285
  submit_button_pp = gr.Button("Submit", variant="primary")
286
-
287
- # with gr.Tab("文献搜索"):
288
- # gr.Markdown(REFERENCES)
289
- #
290
- # title_refs = gr.Textbox(value="Playing Atari with Deep Reinforcement Learning", lines=1, max_lines=1,
291
- # label="Title", info="论文标题")
292
- # slider_refs = gr.Slider(minimum=1, maximum=100, value=5, step=1,
293
- # interactive=True, label="最相关的参考文献数目")
294
- # with gr.Row():
295
- # clear_button_refs = gr.Button("Clear")
296
- # submit_button_refs = gr.Button("Submit", variant="primary")
297
-
298
  with gr.Tab("文献综述 (Coming soon!)"):
299
  gr.Markdown('''
300
  <h1 style="text-align: center;">Coming soon!</h1>
@@ -308,16 +294,6 @@ with gr.Blocks(theme=theme) as demo:
308
  gr.Markdown(STATUS)
309
  file_output = gr.File(label="Output")
310
  json_output = gr.JSON(label="References")
311
-
312
-
313
- # def wrapped_generator(
314
- # paper_title, paper_description, # main input
315
- # openai_api_key=None, openai_url=None, # key
316
- # tldr=True, max_kw_refs=10, bib_refs=None, max_tokens_ref=2048, # references
317
- # knowledge_database=None, max_tokens_kd=2048, query_counts=10, # domain knowledge
318
- # paper_template="ICLR2022", selected_sections=None, model="gpt-4", prompts_mode=False, # outputs parameters
319
- # cache_mode=IS_CACHE_AVAILABLE # handle cache mode
320
- # ):
321
  clear_button_pp.click(fn=clear_inputs, inputs=[title, description_pp], outputs=[title, description_pp])
322
  submit_button_pp.click(fn=wrapped_generator,
323
  inputs=[title, description_pp, key, url,
@@ -325,9 +301,5 @@ with gr.Blocks(theme=theme) as demo:
325
  domain_knowledge, max_tokens_kd_slider, query_counts_slider,
326
  template, sections, model_selection, prompts_mode], outputs=file_output)
327
 
328
- # clear_button_refs.click(fn=clear_inputs_refs, inputs=[title_refs, slider_refs], outputs=[title_refs, slider_refs])
329
- # submit_button_refs.click(fn=wrapped_references_generator,
330
- # inputs=[title_refs, slider_refs, key], outputs=json_output)
331
-
332
  demo.queue(concurrency_count=1, max_size=5, api_open=False)
333
  demo.launch(show_error=True)
 
1
+ import uuid
2
  import gradio as gr
3
  import os
4
  import openai
5
  from auto_backgrounds import generate_backgrounds, generate_draft
6
+ from utils.file_operations import list_folders, urlify
7
+ from huggingface_hub import snapshot_download
8
 
9
  # todo:
10
  # 6. get logs when the procedure is not completed. *
11
  # 7. 自己的文件库; 更多的prompts
12
  # 2. 实现别的功能
 
13
  # future:
14
  # generation.log sometimes disappears (ignore this)
15
  # 1. Check if there are any duplicated citations
16
  # 2. Remove potential thebibliography and bibitem in .tex file
17
 
18
+ #######################################################################################################################
19
+ # Environment Variables
20
+ #######################################################################################################################
21
+ # OPENAI_API_KEY: OpenAI API key for GPT models
22
+ # OPENAI_API_BASE: (Optional) Support alternative OpenAI minors
23
+ # GPT4_ENABLE: (Optional) Set it to 1 to enable GPT-4 model.
24
+
25
+ # AWS_ACCESS_KEY_ID: (Optional) Access AWS cloud storage (you need to edit `BUCKET_NAME` in `utils/storage.py` if you need to use this function)
26
+ # AWS_SECRET_ACCESS_KEY: (Optional) Access AWS cloud storage (you need to edit `BUCKET_NAME` in `utils/storage.py` if you need to use this function)
27
+ # KDB_REPO: (Optional) A Huggingface dataset hosting Knowledge Databases
28
+ # HF_TOKEN: (Optional) Access to KDB_REPO
29
+
30
  #######################################################################################################################
31
  # Check if openai and cloud storage available
32
  #######################################################################################################################
33
  openai_key = os.getenv("OPENAI_API_KEY")
34
+ openai_api_base = os.getenv("OPENAI_API_BASE")
35
+ if openai_api_base is not None:
36
+ openai.api_base = openai_api_base
37
+ GPT4_ENABLE = os.getenv("GPT4_ENABLE") # disable GPT-4 for public repo
38
+
39
  access_key_id = os.getenv('AWS_ACCESS_KEY_ID')
40
  secret_access_key = os.getenv('AWS_SECRET_ACCESS_KEY')
41
+
42
  if access_key_id is None or secret_access_key is None:
43
  print("Access keys are not provided. Outputs cannot be saved to AWS Cloud Storage.\n")
44
  IS_CACHE_AVAILABLE = False
 
65
 
66
  MODEL_LIST = ['gpt-4', 'gpt-3.5-turbo', 'gpt-3.5-turbo-16k']
67
 
68
+ HF_TOKEN = os.getenv("HF_TOKEN")
69
+ REPO_ID = os.getenv("KDB_REPO")
70
+ if HF_TOKEN is not None and REPO_ID is not None:
71
+ snapshot_download(REPO_ID, repo_type="dataset", local_dir="knowledge_databases/",
72
+ local_dir_use_symlinks=False, token=HF_TOKEN)
73
+ KDB_LIST = ["(None)"] + list_folders("knowledge_databases")
74
+
75
  #######################################################################################################################
76
  # Load the list of templates & knowledge databases
77
  #######################################################################################################################
 
164
  def clear_inputs_refs(*args):
165
  return "", 5
166
 
 
167
  def wrapped_generator(
168
  paper_title, paper_description, # main input
169
  openai_api_key=None, openai_url=None, # key
 
172
  paper_template="ICLR2022", selected_sections=None, model="gpt-4", prompts_mode=False, # outputs parameters
173
  cache_mode=IS_CACHE_AVAILABLE # handle cache mode
174
  ):
175
+ # if `cache_mode` is True, then always upload the generated content to my S3.
176
+ file_name_upload = urlify(paper_title) + "_" + uuid.uuid1().hex + ".zip"
 
 
177
  if bib_refs is not None:
178
  bib_refs = bib_refs.name
179
  if openai_api_key is not None:
 
182
  openai.Model.list()
183
  except Exception as e:
184
  raise gr.Error(f"Key错误. Error: {e}")
 
 
 
 
 
 
 
 
 
 
 
 
 
185
  try:
186
  output = generate_draft(
187
  paper_title, description=paper_description, # main input
 
191
  )
192
  if cache_mode:
193
  from utils.storage import upload_file
194
+ upload_file(output, target_name=file_name_upload)
195
  except Exception as e:
196
  raise gr.Error(f"生成失败. Error: {e}")
197
  return output
198
 
199
 
 
 
 
 
 
 
 
200
  with gr.Blocks(theme=theme) as demo:
201
  gr.Markdown(ANNOUNCEMENT)
202
 
 
272
  max_tokens_kd_slider = gr.Slider(minimum=256, maximum=8192, value=2048, step=2,
273
  interactive=True, label="MAX_TOKENS",
274
  info="知识库内容占用Prompts中的Token数")
 
 
 
275
  domain_knowledge = gr.Dropdown(label="预载知识库",
276
  choices=ALL_DATABASES,
277
  value="(None)",
 
281
  with gr.Row():
282
  clear_button_pp = gr.Button("Clear")
283
  submit_button_pp = gr.Button("Submit", variant="primary")
 
 
 
 
 
 
 
 
 
 
 
 
284
  with gr.Tab("文献综述 (Coming soon!)"):
285
  gr.Markdown('''
286
  <h1 style="text-align: center;">Coming soon!</h1>
 
294
  gr.Markdown(STATUS)
295
  file_output = gr.File(label="Output")
296
  json_output = gr.JSON(label="References")
 
 
 
 
 
 
 
 
 
 
297
  clear_button_pp.click(fn=clear_inputs, inputs=[title, description_pp], outputs=[title, description_pp])
298
  submit_button_pp.click(fn=wrapped_generator,
299
  inputs=[title, description_pp, key, url,
 
301
  domain_knowledge, max_tokens_kd_slider, query_counts_slider,
302
  template, sections, model_selection, prompts_mode], outputs=file_output)
303
 
 
 
 
 
304
  demo.queue(concurrency_count=1, max_size=5, api_open=False)
305
  demo.launch(show_error=True)
auto_backgrounds.py CHANGED
@@ -295,6 +295,7 @@ if __name__ == "__main__":
295
  import openai
296
 
297
  openai.api_key = os.getenv("OPENAI_API_KEY")
 
298
 
299
  target_title = "Playing Atari with Decentralized Reinforcement Learning"
300
  output = generate_draft(target_title, knowledge_database="ml_textbook_test")
 
295
  import openai
296
 
297
  openai.api_key = os.getenv("OPENAI_API_KEY")
298
+ openai.api_base = os.getenv("OPENAI_API_BASE")
299
 
300
  target_title = "Playing Atari with Decentralized Reinforcement Learning"
301
  output = generate_draft(target_title, knowledge_database="ml_textbook_test")
kdb_test.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from utils.knowledge import Knowledge
2
+ from langchain.vectorstores import FAISS
3
+ from utils.file_operations import list_folders
4
+ from huggingface_hub import snapshot_download
5
+ import gradio as gr
6
+ import os
7
+ import json
8
+ from models import EMBEDDINGS
9
+
10
+ HF_TOKEN = os.getenv("HF_TOKEN")
11
+ REPO_ID = os.getenv("KDB_REPO")
12
+
13
+ snapshot_download(REPO_ID, repo_type="dataset", local_dir="knowledge_databases/",
14
+ local_dir_use_symlinks=False, token=HF_TOKEN)
15
+ ALL_KDB = ["(None)"] + list_folders("knowledge_databases")
16
+
17
+
18
+
19
+ def query_from_kdb(input, kdb, query_counts):
20
+ if kdb == "(None)":
21
+ return {"knowledge_database": "(None)", "input": input, "output": ""}, ""
22
+
23
+ db_path = f"knowledge_databases/{kdb}"
24
+ db_config_path = os.path.join(db_path, "db_meta.json")
25
+ db_index_path = os.path.join(db_path, "faiss_index")
26
+ if os.path.isdir(db_path):
27
+ # load configuration file
28
+ with open(db_config_path, "r", encoding="utf-8") as f:
29
+ db_config = json.load(f)
30
+ model_name = db_config["embedding_model"]
31
+ embeddings = EMBEDDINGS[model_name]
32
+ db = FAISS.load_local(db_index_path, embeddings)
33
+ knowledge = Knowledge(db=db)
34
+ knowledge.collect_knowledge({input: query_counts}, max_query=query_counts)
35
+ domain_knowledge = knowledge.to_json()
36
+ else:
37
+ raise RuntimeError(f"Failed to query from FAISS.")
38
+ return domain_knowledge, ""
39
+
40
+ ANNOUNCEMENT = """"""
41
+
42
+ with gr.Blocks() as demo:
43
+ gr.HTML(ANNOUNCEMENT)
44
+ with gr.Row():
45
+ with gr.Column():
46
+ kdb_dropdown = gr.Dropdown(choices=ALL_KDB, value="(None)")
47
+ user_input = gr.Textbox(label="Input")
48
+ button_retrieval = gr.Button("Query", variant="primary")
49
+
50
+ with gr.Accordion("Advanced Setting", open=False):
51
+ query_counts_slider = gr.Slider(minimum=1, maximum=20, value=10, step=1,
52
+ interactive=True, label="QUERY_COUNTS",
53
+ info="从知识库内检索多少条内容")
54
+
55
+ retrieval_output = gr.JSON(label="Output")
56
+
57
+
58
+ button_retrieval.click(fn=query_from_kdb, inputs=[user_input, kdb_dropdown, query_counts_slider], outputs=[retrieval_output, user_input])
59
+ demo.queue(concurrency_count=1, max_size=5, api_open=False)
60
+ demo.launch(show_error=True)
61
+
62
+
models/embeddings.py CHANGED
@@ -1,5 +1,12 @@
1
  from langchain.embeddings import HuggingFaceEmbeddings
 
2
 
 
 
 
 
 
 
3
 
4
  model_name = 'sentence-transformers/all-MiniLM-L6-v2'
5
  model_kwargs = {'device': 'cpu'}
@@ -11,4 +18,4 @@ all_minilm_l6_v2 = HuggingFaceEmbeddings(
11
  encode_kwargs=encode_kwargs)
12
 
13
 
14
- EMBEDDINGS = {"all-MiniLM-L6-v2": all_minilm_l6_v2}
 
1
  from langchain.embeddings import HuggingFaceEmbeddings
2
+ import os
3
 
4
+ openai_api_key = os.getenv("OPENAI_API_KEY")
5
+ if openai_api_key is not None:
6
+ from langchain.embeddings.openai import OpenAIEmbeddings
7
+ openai_embedding = OpenAIEmbeddings(model="text-embedding-ada-002", openai_api_key=openai_api_key)
8
+ else:
9
+ openai_embedding = None
10
 
11
  model_name = 'sentence-transformers/all-MiniLM-L6-v2'
12
  model_kwargs = {'device': 'cpu'}
 
18
  encode_kwargs=encode_kwargs)
19
 
20
 
21
+ EMBEDDINGS = {"text-embedding-ada-002": openai_embedding, "all-MiniLM-L6-v2": all_minilm_l6_v2}
utils/file_operations.py CHANGED
@@ -2,6 +2,14 @@ import hashlib
2
  import os, shutil
3
  import datetime
4
  from utils.tex_processing import replace_title
 
 
 
 
 
 
 
 
5
 
6
  def hash_name(input_dict):
7
  '''
 
2
  import os, shutil
3
  import datetime
4
  from utils.tex_processing import replace_title
5
+ import re
6
+
7
+ def urlify(s):
8
+ # Remove all non-word characters (everything except numbers and letters)
9
+ s = re.sub(r"[^\w\s]", '', s)
10
+ # Replace all runs of whitespace with a single dash
11
+ s = re.sub(r"\s+", '_', s)
12
+ return s
13
 
14
  def hash_name(input_dict):
15
  '''
utils/knowledge.py CHANGED
@@ -44,4 +44,18 @@ class Knowledge:
44
  break
45
  else:
46
  prompts.append(prompt)
47
- return "".join(prompts)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
  break
45
  else:
46
  prompts.append(prompt)
47
+ return "".join(prompts)
48
+
49
+ def to_json(self):
50
+ if len(self.contents) == 0:
51
+ return {}
52
+ output = {}
53
+ for idx, content in enumerate(self.contents):
54
+ output[str(idx)] = {
55
+ "content": content["content"],
56
+ "score": str(content["score"])
57
+ }
58
+ print(output)
59
+ return output
60
+
61
+