import os.path import json from utils.references import References from utils.file_operations import hash_name, make_archive, copy_templates from section_generator import section_generation_bg, keywords_generation, figures_generation, section_generation import logging import time TOTAL_TOKENS = 0 TOTAL_PROMPTS_TOKENS = 0 TOTAL_COMPLETION_TOKENS = 0 def log_usage(usage, generating_target, print_out=True): global TOTAL_TOKENS global TOTAL_PROMPTS_TOKENS global TOTAL_COMPLETION_TOKENS prompts_tokens = usage['prompt_tokens'] completion_tokens = usage['completion_tokens'] total_tokens = usage['total_tokens'] TOTAL_TOKENS += total_tokens TOTAL_PROMPTS_TOKENS += prompts_tokens TOTAL_COMPLETION_TOKENS += completion_tokens message = f"For generating {generating_target}, {total_tokens} tokens have been used ({prompts_tokens} for prompts; {completion_tokens} for completion). " \ f"{TOTAL_TOKENS} tokens have been used in total.\n\n" if print_out: print(message) logging.info(message) def _generation_setup(title, description="", template="ICLR2022", model="gpt-4", tldr=False, max_kw_refs=4, max_num_refs=10): print("Generation setup...") paper = {} paper_body = {} # Create a copy in the outputs folder. bibtex_path, destination_folder = copy_templates(template, title) logging.basicConfig(level=logging.INFO, filename=os.path.join(destination_folder, "generation.log") ) # Generate keywords and references print("Initialize the paper information ...") input_dict = {"title": title, "description": description} # keywords, usage = keywords_generation(input_dict, model="gpt-3.5-turbo", max_kw_refs=max_kw_refs) keywords, usage = keywords_generation(input_dict) #todo: handle format error here print(f"keywords: {keywords}") log_usage(usage, "keywords") # generate keywords dictionary keywords = {keyword:max_kw_refs for keyword in keywords} # tmp = {} # for keyword in json.loads(keywords): # tmp[keyword] = max_kw_refs # keywords = tmp print(f"keywords: {keywords}") ref = References() ref.collect_papers(keywords, tldr=tldr) # todo: use `all_paper_ids` to check if all citations are in this list # in tex_processing, remove all duplicated ids # find most relevant papers; max_num_refs all_paper_ids = ref.to_bibtex(bibtex_path) print(f"The paper information has been initialized. References are saved to {bibtex_path}.") paper["title"] = title paper["description"] = description paper["references"] = ref.to_prompts() paper["body"] = paper_body paper["bibtex"] = bibtex_path return paper, destination_folder, all_paper_ids def generate_backgrounds(title, description="", template="ICLR2022", model="gpt-4"): paper, destination_folder, _ = _generation_setup(title, description, template, model) for section in ["introduction", "related works", "backgrounds"]: try: usage = section_generation_bg(paper, section, destination_folder, model=model) log_usage(usage, section) except Exception as e: message = f"Failed to generate {section}. {type(e).__name__} was raised: {e}" print(message) logging.info(message) print(f"The paper '{title}' has been generated. Saved to {destination_folder}.") input_dict = {"title": title, "description": description, "generator": "generate_backgrounds"} filename = hash_name(input_dict) + ".zip" return make_archive(destination_folder, filename) def fake_generator(title, description="", template="ICLR2022", model="gpt-4"): """ This function is used to test the whole pipeline without calling OpenAI API. """ input_dict = {"title": title, "description": description, "generator": "generate_draft"} filename = hash_name(input_dict) + ".zip" return make_archive("sample-output.pdf", filename) def generate_draft(title, description="", template="ICLR2022", model="gpt-4", tldr=True, max_kw_refs=4): paper, destination_folder, _ = _generation_setup(title, description, template, model, tldr, max_kw_refs) raise # todo: `list_of_methods` failed to be generated; find a solution ... # print("Generating figures ...") # usage = figures_generation(paper, destination_folder, model="gpt-3.5-turbo") # log_usage(usage, "figures") # for section in ["introduction", "related works", "backgrounds", "methodology", "experiments", "conclusion", "abstract"]: for section in ["introduction", "related works", "backgrounds", "methodology", "experiments", "conclusion", "abstract"]: max_attempts = 4 attempts_count = 0 while attempts_count < max_attempts: try: usage = section_generation(paper, section, destination_folder, model=model) log_usage(usage, section) break except Exception as e: message = f"Failed to generate {section}. {type(e).__name__} was raised: {e}" print(message) logging.info(message) attempts_count += 1 time.sleep(20) input_dict = {"title": title, "description": description, "generator": "generate_draft"} filename = hash_name(input_dict) + ".zip" return make_archive(destination_folder, filename) if __name__ == "__main__": import openai openai.api_key = os.getenv("OPENAI_API_KEY") title = "Using interpretable boosting algorithms for modeling environmental and agricultural data" description = "" output = generate_draft(title, description, tldr=True, max_kw_refs=10) print(output)