from utils.references import References from utils.file_operations import hash_name, make_archive, copy_templates from section_generator import section_generation_bg, keywords_generation, figures_generation, section_generation import logging TOTAL_TOKENS = 0 TOTAL_PROMPTS_TOKENS = 0 TOTAL_COMPLETION_TOKENS = 0 def log_usage(usage, generating_target, print_out=True): global TOTAL_TOKENS global TOTAL_PROMPTS_TOKENS global TOTAL_COMPLETION_TOKENS prompts_tokens = usage['prompt_tokens'] completion_tokens = usage['completion_tokens'] total_tokens = usage['total_tokens'] TOTAL_TOKENS += total_tokens TOTAL_PROMPTS_TOKENS += prompts_tokens TOTAL_COMPLETION_TOKENS += completion_tokens message = f"For generating {generating_target}, {total_tokens} tokens have been used ({prompts_tokens} for prompts; {completion_tokens} for completion). " \ f"{TOTAL_TOKENS} tokens have been used in total." if print_out: print(message) logging.info(message) def _generation_setup(title, description="", template="ICLR2022", model="gpt-4"): paper = {} paper_body = {} # Create a copy in the outputs folder. bibtex_path, destination_folder = copy_templates(template, title) logging.basicConfig(level=logging.INFO, filename=destination_folder + "/generation.log") # Generate keywords and references print("Initialize the paper information ...") input_dict = {"title": title, "description": description} keywords, usage = keywords_generation(input_dict, model="gpt-3.5-turbo") print(f"keywords: {keywords}") log_usage(usage, "keywords") ref = References(load_papers="") ref.collect_papers(keywords, method="arxiv") all_paper_ids = ref.to_bibtex(bibtex_path) # todo: this will used to check if all citations are in this list print(f"The paper information has been initialized. References are saved to {bibtex_path}.") paper["title"] = title paper["description"] = description paper["references"] = ref.to_prompts() paper["body"] = paper_body paper["bibtex"] = bibtex_path return paper, destination_folder, all_paper_ids def generate_backgrounds(title, description="", template="ICLR2022", model="gpt-4"): paper, destination_folder, _ = _generation_setup(title, description, template, model) for section in ["introduction", "related works", "backgrounds"]: try: usage = section_generation_bg(paper, section, destination_folder, model=model) log_usage(usage, section) except Exception as e: print(f"Failed to generate {section} due to the error: {e}") print(f"The paper {title} has been generated. Saved to {destination_folder}.") input_dict = {"title": title, "description": description, "generator": "generate_backgrounds"} filename = hash_name(input_dict) + ".zip" return make_archive(destination_folder, filename) def fake_generator(title, description="", template="ICLR2022", model="gpt-4"): """ This function is used to test the whole pipeline without calling OpenAI API. """ input_dict = {"title": title, "description": description, "generator": "generate_draft"} filename = hash_name(input_dict) + ".zip" return make_archive("sample-output.pdf", filename) def generate_draft(title, description="", template="ICLR2022", model="gpt-4"): paper, destination_folder, _ = _generation_setup(title, description, template, model) print("Generating figures ...") usage = figures_generation(paper, destination_folder, model="gpt-3.5-turbo") # todo: use `figures_generation` function to complete remainings # prompts = generate_experiments_prompts(paper) # gpt_response, usage = get_responses(prompts, model) # list_of_methods = list(extract_json(gpt_response)) log_usage(usage, "figures") # generate_random_figures(list_of_methods, save_to_path + "comparison.png") # for section in ["introduction", "related works", "backgrounds", "methodology", "experiments", "conclusion", "abstract"]: for section in ["introduction", "related works", "backgrounds", "experiments", "conclusion", "abstract"]: try: usage = section_generation(paper, section, destination_folder, model=model) log_usage(usage, section) except Exception as e: print(f"Failed to generate {section} due to the error: {e}") input_dict = {"title": title, "description": description, "generator": "generate_draft"} filename = hash_name(input_dict) + ".zip" return make_archive(destination_folder, filename)