Spaces:
Runtime error
Runtime error
Tristan Thrush
commited on
Commit
·
80f2297
1
Parent(s):
4dd611a
fixed cuttoff issue for wide leaderboards, made leaderboard data updating asynchronous, made streamlit set the url to match the selected dataset
Browse files- app.py +57 -52
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import requests
|
2 |
import pandas as pd
|
3 |
from tqdm.auto import tqdm
|
4 |
import streamlit as st
|
@@ -6,17 +5,9 @@ from huggingface_hub import HfApi, hf_hub_download
|
|
6 |
from huggingface_hub.repocard import metadata_load
|
7 |
from ascending_metrics import ascending_metrics
|
8 |
import numpy as np
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
link = "https://huggingface.co/" + model_name
|
13 |
-
return f'<a target="_blank" href="{link}">{model_name}</a>'
|
14 |
-
|
15 |
-
def make_bold(value):
|
16 |
-
return f'<b>{value}</b>'
|
17 |
-
|
18 |
-
def make_string(value):
|
19 |
-
return str(value)
|
20 |
|
21 |
|
22 |
def get_model_ids():
|
@@ -71,24 +62,42 @@ def parse_metrics_rows(meta):
|
|
71 |
row[type] = value
|
72 |
yield row
|
73 |
|
|
|
|
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
if meta is None:
|
82 |
-
continue
|
83 |
-
for row in parse_metrics_rows(meta):
|
84 |
-
if row is None:
|
85 |
continue
|
86 |
-
row
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
|
91 |
-
dataframe = get_data()
|
92 |
selectable_datasets = list(set(dataframe.dataset.tolist()))
|
93 |
|
94 |
st.markdown("# 🤗 Leaderboards")
|
@@ -104,19 +113,20 @@ dataset = st.sidebar.selectbox(
|
|
104 |
selectable_datasets,
|
105 |
index=selectable_datasets.index(default_dataset),
|
106 |
)
|
|
|
107 |
|
108 |
dataset_df = dataframe[dataframe.dataset == dataset]
|
109 |
dataset_df = dataset_df.dropna(axis="columns", how="all")
|
110 |
|
111 |
selectable_metrics = list(filter(lambda column: column not in ("model_id", "dataset"), dataset_df.columns))
|
112 |
-
|
113 |
-
"
|
114 |
selectable_metrics,
|
115 |
)
|
116 |
|
117 |
dataset_df = dataset_df.filter(["model_id"] + selectable_metrics)
|
118 |
dataset_df = dataset_df.dropna(thresh=2) # Want at least two non-na values (one for model_id and one for a metric).
|
119 |
-
dataset_df = dataset_df.sort_values(by=
|
120 |
dataset_df = dataset_df.replace(np.nan, '-')
|
121 |
|
122 |
st.markdown(
|
@@ -127,30 +137,25 @@ st.markdown(
|
|
127 |
"Want to beat the leaderboard? Don't see your model here? Simply request an automatic evaluation [here](https://huggingface.co/spaces/autoevaluate/autoevaluate)."
|
128 |
)
|
129 |
|
130 |
-
#
|
131 |
-
dataset_df = dataset_df.reset_index(drop=True)
|
132 |
-
dataset_df.index += 1
|
133 |
-
|
134 |
-
# turn the model ids into clickable links
|
135 |
-
dataset_df["model_id"] = dataset_df["model_id"].apply(make_clickable)
|
136 |
-
dataset_df[metric] = dataset_df[metric].apply(make_bold)
|
137 |
-
for other_metric in selectable_metrics:
|
138 |
-
dataset_df[other_metric] = dataset_df[other_metric].apply(make_string)
|
139 |
-
|
140 |
-
# Make the selected metric appear right after model names
|
141 |
cols = dataset_df.columns.tolist()
|
142 |
-
cols.remove(
|
143 |
-
cols = cols[:1] + [
|
144 |
dataset_df = dataset_df[cols]
|
145 |
|
146 |
-
#
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
150 |
|
151 |
-
|
|
|
|
|
|
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
table_html = table_html.replace("<th>", '<th align="left">') # left-align the headers
|
156 |
-
st.write(table_html, unsafe_allow_html=True)
|
|
|
|
|
1 |
import pandas as pd
|
2 |
from tqdm.auto import tqdm
|
3 |
import streamlit as st
|
|
|
5 |
from huggingface_hub.repocard import metadata_load
|
6 |
from ascending_metrics import ascending_metrics
|
7 |
import numpy as np
|
8 |
+
from st_aggrid import AgGrid, GridOptionsBuilder, JsCode
|
9 |
+
from os.path import exists
|
10 |
+
import threading
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
|
13 |
def get_model_ids():
|
|
|
62 |
row[type] = value
|
63 |
yield row
|
64 |
|
65 |
+
@st.cache(ttl=3600)
|
66 |
+
def get_data_wrapper():
|
67 |
|
68 |
+
def get_data():
|
69 |
+
data = []
|
70 |
+
model_ids = get_model_ids()
|
71 |
+
for model_id in tqdm(model_ids):
|
72 |
+
meta = get_metadata(model_id)
|
73 |
+
if meta is None:
|
|
|
|
|
|
|
|
|
74 |
continue
|
75 |
+
for row in parse_metrics_rows(meta):
|
76 |
+
if row is None:
|
77 |
+
continue
|
78 |
+
row["model_id"] = model_id
|
79 |
+
data.append(row)
|
80 |
+
dataframe = pd.DataFrame.from_records(data)
|
81 |
+
dataframe.to_pickle("cache.pkl")
|
82 |
+
|
83 |
+
if exists("cache.pkl"):
|
84 |
+
# If we have saved the results previously, call an asynchronous process
|
85 |
+
# to fetch the results and update the saved file. Don't make users wait
|
86 |
+
# while we fetch the new results. Instead, display the old results for
|
87 |
+
# now. The new results should be loaded when this method
|
88 |
+
# is called again.
|
89 |
+
dataframe = pd.read_pickle("cache.pkl")
|
90 |
+
t = threading.Thread(name='get_data procs', target=get_data)
|
91 |
+
t.start()
|
92 |
+
else:
|
93 |
+
# We have to make the users wait during the first startup of this app.
|
94 |
+
get_data()
|
95 |
+
dataframe = pd.read_pickle("cache.pkl")
|
96 |
+
|
97 |
+
return dataframe
|
98 |
+
|
99 |
+
dataframe = get_data_wrapper()
|
100 |
|
|
|
|
|
101 |
selectable_datasets = list(set(dataframe.dataset.tolist()))
|
102 |
|
103 |
st.markdown("# 🤗 Leaderboards")
|
|
|
113 |
selectable_datasets,
|
114 |
index=selectable_datasets.index(default_dataset),
|
115 |
)
|
116 |
+
st.experimental_set_query_params(**{"dataset": [dataset]})
|
117 |
|
118 |
dataset_df = dataframe[dataframe.dataset == dataset]
|
119 |
dataset_df = dataset_df.dropna(axis="columns", how="all")
|
120 |
|
121 |
selectable_metrics = list(filter(lambda column: column not in ("model_id", "dataset"), dataset_df.columns))
|
122 |
+
default_metric = st.sidebar.radio(
|
123 |
+
"Default Metric",
|
124 |
selectable_metrics,
|
125 |
)
|
126 |
|
127 |
dataset_df = dataset_df.filter(["model_id"] + selectable_metrics)
|
128 |
dataset_df = dataset_df.dropna(thresh=2) # Want at least two non-na values (one for model_id and one for a metric).
|
129 |
+
dataset_df = dataset_df.sort_values(by=default_metric, ascending=default_metric in ascending_metrics)
|
130 |
dataset_df = dataset_df.replace(np.nan, '-')
|
131 |
|
132 |
st.markdown(
|
|
|
137 |
"Want to beat the leaderboard? Don't see your model here? Simply request an automatic evaluation [here](https://huggingface.co/spaces/autoevaluate/autoevaluate)."
|
138 |
)
|
139 |
|
140 |
+
# Make the default metric appear right after model names
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
cols = dataset_df.columns.tolist()
|
142 |
+
cols.remove(default_metric)
|
143 |
+
cols = cols[:1] + [default_metric] + cols[1:]
|
144 |
dataset_df = dataset_df[cols]
|
145 |
|
146 |
+
# Make the leaderboard
|
147 |
+
gb = GridOptionsBuilder.from_dataframe(dataset_df)
|
148 |
+
gb.configure_column(
|
149 |
+
"model_id",
|
150 |
+
cellRenderer=JsCode('''function(params) {return '<a target="_blank" href="https://huggingface.co/'+params.value+'">'+params.value+'</a>'}'''),
|
151 |
+
)
|
152 |
+
for name in selectable_metrics:
|
153 |
+
gb.configure_column(name, type=["numericColumn","numberColumnFilter","customNumericFormat"], precision=2, aggFunc='sum')
|
154 |
|
155 |
+
gb.configure_column(
|
156 |
+
default_metric,
|
157 |
+
cellStyle=JsCode('''function(params) { return {'backgroundColor': '#FFD21E'}}''')
|
158 |
+
)
|
159 |
|
160 |
+
go = gb.build()
|
161 |
+
AgGrid(dataset_df, gridOptions=go, allow_unsafe_jscode=True, fit_columns_on_grid_load=True)
|
|
|
|
requirements.txt
CHANGED
@@ -2,4 +2,5 @@ pandas
|
|
2 |
tqdm
|
3 |
streamlit
|
4 |
huggingface_hub
|
5 |
-
numpy
|
|
|
|
2 |
tqdm
|
3 |
streamlit
|
4 |
huggingface_hub
|
5 |
+
numpy
|
6 |
+
streamlit-aggrid
|