Spaces:
Runtime error
Runtime error
File size: 8,381 Bytes
ef65795 2ed83bb 348bdab 6c14077 e502d68 0ba78e9 ef65795 0ba78e9 8dec3b6 533bc81 8dec3b6 fcdf4a0 d68b7d5 8dec3b6 fcdf4a0 8dec3b6 e502d68 8dec3b6 159fb33 0ba78e9 6c14077 0ba78e9 0779c9b 6c14077 1e40fe5 6c14077 0779c9b 0ba78e9 1e40fe5 0ba78e9 e32484d 31b9ddb 6c14077 0ba78e9 348bdab bd88977 d68b7d5 bd88977 dd366f1 eef70c0 dd366f1 348bdab ea714fc 5b19fc7 675f890 e502d68 ef65795 d0649fc 2ed83bb 74c1d10 2ed83bb 482d203 d68b7d5 aacdddf b76fdef aacdddf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import inspect
import uuid
from typing import Dict, List, Union
import jsonlines
import requests
import streamlit as st
from evaluate import load
from huggingface_hub import HfApi, ModelFilter, Repository, dataset_info, list_metrics
from tqdm import tqdm
AUTOTRAIN_TASK_TO_HUB_TASK = {
"binary_classification": "text-classification",
"multi_class_classification": "text-classification",
"natural_language_inference": "text-classification",
"entity_extraction": "token-classification",
"extractive_question_answering": "question-answering",
"translation": "translation",
"summarization": "summarization",
"image_binary_classification": "image-classification",
"image_multi_class_classification": "image-classification",
"text_zero_shot_classification": "text-generation",
}
HUB_TASK_TO_AUTOTRAIN_TASK = {v: k for k, v in AUTOTRAIN_TASK_TO_HUB_TASK.items()}
LOGS_REPO = "evaluation-job-logs"
def get_auth_headers(token: str, prefix: str = "Bearer"):
return {"Authorization": f"{prefix} {token}"}
def http_post(path: str, token: str, payload=None, domain: str = None, params=None) -> requests.Response:
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
try:
response = requests.post(
url=domain + path,
json=payload,
headers=get_auth_headers(token=token),
allow_redirects=True,
params=params,
)
except requests.exceptions.ConnectionError:
print("β Failed to reach AutoNLP API, check your internet connection")
response.raise_for_status()
return response
def http_get(path: str, domain: str, token: str = None, params: dict = None) -> requests.Response:
"""HTTP POST request to `path`, raises UnreachableAPIError if the API cannot be reached"""
try:
response = requests.get(
url=domain + path,
headers=get_auth_headers(token=token),
allow_redirects=True,
params=params,
)
except requests.exceptions.ConnectionError:
print(f"β Failed to reach {path}, check your internet connection")
response.raise_for_status()
return response
def get_metadata(dataset_name: str, token: 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) -> Union[Dict, None]:
data = dataset_info(dataset_name, token=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)
if data.cardData is not None and "train-eval-index" in data.cardData.keys():
return data.cardData["train-eval-index"]
else:
return None
def get_compatible_models(task: str, dataset_ids: List[str]) -> List[str]:
"""
Returns all model IDs that are compatible with the given task and dataset names.
Args:
task (`str`): The task to search for.
dataset_names (`List[str]`): A list of dataset names to search for.
Returns:
A list of model IDs, sorted alphabetically.
"""
compatible_models = []
# Allow any summarization model to be used for summarization tasks
# and allow any text-generation model to be used for text_zero_shot_classification
if task in ("summarization", "text_zero_shot_classification"):
model_filter = ModelFilter(
task=AUTOTRAIN_TASK_TO_HUB_TASK[task],
library=["transformers", "pytorch"],
)
compatible_models.extend(HfApi().list_models(filter=model_filter))
# Include models trained on SQuAD datasets, since these can be evaluated on
# other SQuAD-like datasets
if task == "extractive_question_answering":
dataset_ids.extend(["squad", "squad_v2"])
# TODO: relax filter on PyTorch models if TensorFlow supported in AutoTrain
for dataset_id in dataset_ids:
model_filter = ModelFilter(
task=AUTOTRAIN_TASK_TO_HUB_TASK[task],
trained_dataset=dataset_id,
library=["transformers", "pytorch"],
)
compatible_models.extend(HfApi().list_models(filter=model_filter))
return sorted(set([model.modelId for model in compatible_models]))
def get_key(col_mapping, val):
for key, value in col_mapping.items():
if val == value:
return key
return "key doesn't exist"
def format_col_mapping(col_mapping: dict) -> dict:
for k, v in col_mapping["answers"].items():
col_mapping[f"answers.{k}"] = f"answers.{v}"
del col_mapping["answers"]
return col_mapping
def commit_evaluation_log(evaluation_log, hf_access_token=None):
logs_repo_url = f"https://huggingface.co/datasets/autoevaluate/{LOGS_REPO}"
logs_repo = Repository(
local_dir=LOGS_REPO,
clone_from=logs_repo_url,
repo_type="dataset",
private=True,
use_auth_token=hf_access_token,
)
logs_repo.git_pull()
with jsonlines.open(f"{LOGS_REPO}/logs.jsonl") as r:
lines = []
for obj in r:
lines.append(obj)
lines.append(evaluation_log)
with jsonlines.open(f"{LOGS_REPO}/logs.jsonl", mode="w") as writer:
for job in lines:
writer.write(job)
logs_repo.push_to_hub(
commit_message=f"Evaluation submitted with project name {evaluation_log['payload']['proj_name']}"
)
print("INFO -- Pushed evaluation logs to the Hub")
@st.experimental_memo
def get_supported_metrics():
"""Helper function to get all metrics compatible with evaluation service.
Requires all metric dependencies installed in the same environment, so wait until
https://github.com/huggingface/evaluate/issues/138 is resolved before using this.
"""
metrics = [metric.id for metric in list_metrics()]
supported_metrics = []
for metric in tqdm(metrics):
# TODO: this currently requires all metric dependencies to be installed
# in the same environment. Refactor to avoid needing to actually load
# the metric.
try:
print(f"INFO -- Attempting to load metric: {metric}")
metric_func = load(metric)
except Exception as e:
print(e)
print("WARNING -- Skipping the following metric, which cannot load:", metric)
continue
argspec = inspect.getfullargspec(metric_func.compute)
if "references" in argspec.kwonlyargs and "predictions" in argspec.kwonlyargs:
# We require that "references" and "predictions" are arguments
# to the metric function. We also require that the other arguments
# besides "references" and "predictions" have defaults and so do not
# need to be specified explicitly.
defaults = True
for key, value in argspec.kwonlydefaults.items():
if key not in ("references", "predictions"):
if value is None:
defaults = False
break
if defaults:
supported_metrics.append(metric)
return supported_metrics
def get_dataset_card_url(dataset_id: str) -> str:
"""Gets the URL to edit the dataset card for the given dataset ID."""
if "/" in dataset_id:
return f"https://huggingface.co/datasets/{dataset_id}/edit/main/README.md"
else:
return f"https://github.com/huggingface/datasets/edit/master/datasets/{dataset_id}/README.md"
def create_autotrain_project_name(dataset_id: str, dataset_config: str) -> str:
"""Creates an AutoTrain project name for the given dataset ID."""
# Project names cannot have "/", so we need to format community datasets accordingly
dataset_id_formatted = dataset_id.replace("/", "__")
dataset_config_formatted = dataset_config.replace("--", "__")
# Project names need to be unique, so we append a random string to guarantee this while adhering to naming rules
basename = f"eval-{dataset_id_formatted}-{dataset_config_formatted}"
basename = basename[:60] if len(basename) > 60 else basename # Hub naming limitation
return f"{basename}-{str(uuid.uuid4())[:6]}"
def get_config_metadata(config: str, metadata: List[Dict] = None) -> Union[Dict, None]:
"""Gets the dataset card metadata for the given config."""
if metadata is None:
return None
config_metadata = [m for m in metadata if m["config"] == config]
if len(config_metadata) >= 1:
return config_metadata[0]
else:
return None
|