Spaces:
Build error
Build error
from PIL import Image | |
import requests | |
import matplotlib.pyplot as plt | |
import gradio as gr | |
from gradio.mix import Parallel | |
import torch | |
from transformers import ( | |
ViTConfig, | |
ViTForImageClassification, | |
ViTFeatureExtractor, | |
AutoModelForCausalLM, | |
LogitsProcessorList, | |
MinLengthLogitsProcessor, | |
StoppingCriteriaList, | |
MaxLengthCriteria, | |
ImageClassificationPipeline, | |
PerceiverForImageClassificationConvProcessing, | |
PerceiverFeatureExtractor, | |
VisionEncoderDecoderModel, | |
AutoTokenizer, | |
) | |
import json | |
import os | |
#get from local file spaces_info.py | |
from spaces_info import description, examples, initial_prompt_value | |
#some constants | |
API_URL = os.getenv("API_URL") | |
HF_API_TOKEN = os.getenv("HF_API_TOKEN") | |
##Bloom Inference API | |
API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom" | |
#HF_API_TOKEN = os.environ["HF_API_TOKEN"] | |
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"} | |
print(API_URL) | |
print(HF_API_TOKEN) | |
def query(payload): | |
print(payload) | |
response = requests.request("POST", API_URL, json=payload, headers={"Authorization": f"Bearer {HF_API_TOKEN}"}) | |
print(response) | |
return json.loads(response.content.decode("utf-8")) | |
def inference(input_sentence, max_length, sample_or_greedy, seed=42): | |
if sample_or_greedy == "Sample": | |
parameters = { | |
"max_new_tokens": max_length, | |
"top_p": 0.9, | |
"do_sample": True, | |
"seed": seed, | |
"early_stopping": False, | |
"length_penalty": 0.0, | |
"eos_token_id": None, | |
} | |
else: | |
parameters = { | |
"max_new_tokens": max_length, | |
"do_sample": False, | |
"seed": seed, | |
"early_stopping": False, | |
"length_penalty": 0.0, | |
"eos_token_id": None, | |
} | |
payload = {"inputs": input_sentence, "parameters": parameters,"options" : {"use_cache": False} } | |
data = query(payload) | |
if "error" in data: | |
return (None, None, f"<span style='color:red'>ERROR: {data['error']} </span>") | |
generation = data[0]["generated_text"].split(input_sentence, 1)[1] | |
print(generation) | |
''' | |
return ( | |
input_sentence | |
+ prompt_to_generation | |
+ generation | |
+ after_generation, | |
data[0]["generated_text"], | |
"", | |
) | |
''' | |
return generation | |
def create_story(text_seed): | |
#tokenizer = AutoTokenizer.from_pretrained("gpt2") | |
#model = AutoModelForCausalLM.from_pretrained("gpt2") | |
#eleutherAI gpt-3 based | |
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M") | |
model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-125M") | |
# set pad_token_id to eos_token_id because GPT2 does not have a EOS token | |
model.config.pad_token_id = model.config.eos_token_id | |
#input_prompt = "It might be possible to" | |
input_prompt = text_seed | |
input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids | |
# instantiate logits processors | |
logits_processor = LogitsProcessorList( | |
[ | |
MinLengthLogitsProcessor(10, eos_token_id=model.config.eos_token_id), | |
] | |
) | |
stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=100)]) | |
outputs = model.greedy_search( | |
input_ids, logits_processor=logits_processor, stopping_criteria=stopping_criteria | |
) | |
result_text = tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
return result_text | |
def self_caption(image): | |
repo_name = "ydshieh/vit-gpt2-coco-en" | |
#test_image = "cats.jpg" | |
test_image = image | |
#url = 'http://images.cocodataset.org/val2017/000000039769.jpg' | |
#test_image = Image.open(requests.get(url, stream=True).raw) | |
#test_image.save("cats.png") | |
feature_extractor2 = ViTFeatureExtractor.from_pretrained(repo_name) | |
tokenizer = AutoTokenizer.from_pretrained(repo_name) | |
model2 = VisionEncoderDecoderModel.from_pretrained(repo_name) | |
pixel_values = feature_extractor2(test_image, return_tensors="pt").pixel_values | |
print("Pixel Values") | |
print(pixel_values) | |
# autoregressively generate text (using beam search or other decoding strategy) | |
generated_ids = model2.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True) | |
# decode into text | |
preds = tokenizer.batch_decode(generated_ids[0], skip_special_tokens=True) | |
preds = [pred.strip() for pred in preds] | |
print("Predictions") | |
print(preds) | |
print("The preds type is : ",type(preds)) | |
pred_keys = ["Prediction"] | |
pred_value = preds | |
pred_dictionary = dict(zip(pred_keys, pred_value)) | |
print("Pred dictionary") | |
print(pred_dictionary) | |
#return(pred_dictionary) | |
preds = ' '.join(preds) | |
#inference(input_sentence, max_length, sample_or_greedy, seed=42) | |
story = inference(preds, 32, "Sample", 42) | |
#story = create_story(preds) | |
#story = ' '.join(story) | |
return story | |
def classify_image(image): | |
config = ViTConfig(num_hidden_layers=12, hidden_size=768) | |
model = ViTForImageClassification(config) | |
#print(config) | |
feature_extractor = ViTFeatureExtractor() | |
# or, to load one that corresponds to a checkpoint on the hub: | |
#feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224") | |
#the following gets called by classify_image() | |
feature_extractor = PerceiverFeatureExtractor.from_pretrained("deepmind/vision-perceiver-conv") | |
model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv") | |
#google/vit-base-patch16-224, deepmind/vision-perceiver-conv | |
image_pipe = ImageClassificationPipeline(model=model, feature_extractor=feature_extractor) | |
results = image_pipe(image) | |
print("RESULTS") | |
print(results) | |
# convert to format Gradio expects | |
output = {} | |
for prediction in results: | |
predicted_label = prediction['label'] | |
score = prediction['score'] | |
output[predicted_label] = score | |
print("OUTPUT") | |
print(output) | |
return output | |
image = gr.inputs.Image(type="pil") | |
label = gr.outputs.Label(num_top_classes=5) | |
#examples = [ ["cats.jpg"], ["batter.jpg"],["drinkers.jpg"] ] | |
examples = [ ["batter.jpg"] ] | |
title = "Generate a Story from an Image" | |
description = "Demo for classifying images with Perceiver IO. To use it, simply upload an image and click 'submit', a story is autogenerated as well" | |
article = "<p style='text-align: center'></p>" | |
img_info1 = gr.Interface( | |
fn=classify_image, | |
inputs=image, | |
outputs=label, | |
) | |
img_info2 = gr.Interface( | |
fn=self_caption, | |
inputs=image, | |
#outputs=label, | |
outputs = [ | |
gr.outputs.Textbox(label = 'Story') | |
], | |
) | |
Parallel(img_info1,img_info2, inputs=image, title=title, description=description, examples=examples, enable_queue=True).launch(debug=True) | |
#Parallel(img_info1,img_info2, inputs=image, outputs=label, title=title, description=description, examples=examples, enable_queue=True).launch(debug=True) | |