|
import os |
|
from typing import List |
|
|
|
from faster_whisper import WhisperModel, download_model |
|
from src.config import ModelConfig |
|
from src.hooks.progressListener import ProgressListener |
|
from src.modelCache import ModelCache |
|
from src.whisper.abstractWhisperContainer import AbstractWhisperCallback, AbstractWhisperContainer |
|
|
|
class FasterWhisperContainer(AbstractWhisperContainer): |
|
def __init__(self, model_name: str, device: str = None, download_root: str = None, |
|
cache: ModelCache = None, |
|
models: List[ModelConfig] = []): |
|
super().__init__(model_name, device, download_root, cache, models) |
|
|
|
def ensure_downloaded(self): |
|
""" |
|
Ensure that the model is downloaded. This is useful if you want to ensure that the model is downloaded before |
|
passing the container to a subprocess. |
|
""" |
|
model_config = self._get_model_config() |
|
|
|
if os.path.isdir(model_config.url): |
|
model_config.path = model_config.url |
|
else: |
|
model_config.path = download_model(model_config.url, output_dir=self.download_root) |
|
|
|
def _get_model_config(self) -> ModelConfig: |
|
""" |
|
Get the model configuration for the model. |
|
""" |
|
for model in self.models: |
|
if model.name == self.model_name: |
|
return model |
|
return None |
|
|
|
def _create_model(self): |
|
print("Loading faster whisper model " + self.model_name) |
|
model_config = self._get_model_config() |
|
|
|
if model_config.type == "whisper" and model_config.url not in ["tiny", "base", "small", "medium", "large", "large-v2"]: |
|
raise Exception("FasterWhisperContainer does not yet support Whisper models. Use ct2-transformers-converter to convert the model to a faster-whisper model.") |
|
|
|
device = self.device |
|
|
|
if (device is None): |
|
device = "auto" |
|
|
|
model = WhisperModel(model_config.url, device=device, compute_type="float16") |
|
return model |
|
|
|
def create_callback(self, language: str = None, task: str = None, initial_prompt: str = None, **decodeOptions: dict): |
|
""" |
|
Create a WhisperCallback object that can be used to transcript audio files. |
|
|
|
Parameters |
|
---------- |
|
language: str |
|
The target language of the transcription. If not specified, the language will be inferred from the audio content. |
|
task: str |
|
The task - either translate or transcribe. |
|
initial_prompt: str |
|
The initial prompt to use for the transcription. |
|
decodeOptions: dict |
|
Additional options to pass to the decoder. Must be pickleable. |
|
|
|
Returns |
|
------- |
|
A WhisperCallback object. |
|
""" |
|
return FasterWhisperCallback(self, language=language, task=task, initial_prompt=initial_prompt, **decodeOptions) |
|
|
|
class FasterWhisperCallback(AbstractWhisperCallback): |
|
def __init__(self, model_container: FasterWhisperContainer, language: str = None, task: str = None, initial_prompt: str = None, **decodeOptions: dict): |
|
self.model_container = model_container |
|
self.language = language |
|
self.task = task |
|
self.initial_prompt = initial_prompt |
|
self.decodeOptions = decodeOptions |
|
|
|
def invoke(self, audio, segment_index: int, prompt: str, detected_language: str, progress_listener: ProgressListener = None): |
|
""" |
|
Peform the transcription of the given audio file or data. |
|
|
|
Parameters |
|
---------- |
|
audio: Union[str, np.ndarray, torch.Tensor] |
|
The audio file to transcribe, or the audio data as a numpy array or torch tensor. |
|
segment_index: int |
|
The target language of the transcription. If not specified, the language will be inferred from the audio content. |
|
task: str |
|
The task - either translate or transcribe. |
|
progress_listener: ProgressListener |
|
A callback to receive progress updates. |
|
""" |
|
model: WhisperModel = self.model_container.get_model() |
|
language_code = self._lookup_language_code(self.language) if self.language else None |
|
|
|
segments_generator, info = model.transcribe(audio, \ |
|
language=language_code if language_code else detected_language, task=self.task, \ |
|
initial_prompt=self._concat_prompt(self.initial_prompt, prompt) if segment_index == 0 else prompt, \ |
|
**self.decodeOptions |
|
) |
|
|
|
segments = [] |
|
|
|
for segment in segments_generator: |
|
segments.append(segment) |
|
|
|
if progress_listener is not None: |
|
progress_listener.on_progress(segment.end, info.duration) |
|
|
|
text = " ".join([segment.text for segment in segments]) |
|
|
|
|
|
whisper_segments = [{ |
|
"text": segment.text, |
|
"start": segment.start, |
|
"end": segment.end, |
|
|
|
|
|
"words": [{ |
|
"start": word.start, |
|
"end": word.end, |
|
"word": word.word, |
|
"probability": word.probability |
|
} for word in (segment.words if segment.words is not None else []) ] |
|
} for segment in segments] |
|
|
|
result = { |
|
"segments": whisper_segments, |
|
"text": text, |
|
"language": info.language if info else None, |
|
|
|
|
|
"language_probability": info.language_probability if info else None, |
|
"duration": info.duration if info else None |
|
} |
|
|
|
if progress_listener is not None: |
|
progress_listener.on_finished() |
|
return result |
|
|
|
def _lookup_language_code(self, language: str): |
|
lookup = { |
|
"english": "en", "chinese": "zh-cn", "german": "de", "spanish": "es", "russian": "ru", "korean": "ko", |
|
"french": "fr", "japanese": "ja", "portuguese": "pt", "turkish": "tr", "polish": "pl", "catalan": "ca", |
|
"dutch": "nl", "arabic": "ar", "swedish": "sv", "italian": "it", "indonesian": "id", "hindi": "hi", |
|
"finnish": "fi", "vietnamese": "vi", "hebrew": "he", "ukrainian": "uk", "greek": "el", "malay": "ms", |
|
"czech": "cs", "romanian": "ro", "danish": "da", "hungarian": "hu", "tamil": "ta", "norwegian": "no", |
|
"thai": "th", "urdu": "ur", "croatian": "hr", "bulgarian": "bg", "lithuanian": "lt", "latin": "la", |
|
"maori": "mi", "malayalam": "ml", "welsh": "cy", "slovak": "sk", "telugu": "te", "persian": "fa", |
|
"latvian": "lv", "bengali": "bn", "serbian": "sr", "azerbaijani": "az", "slovenian": "sl", |
|
"kannada": "kn", "estonian": "et", "macedonian": "mk", "breton": "br", "basque": "eu", "icelandic": "is", |
|
"armenian": "hy", "nepali": "ne", "mongolian": "mn", "bosnian": "bs", "kazakh": "kk", "albanian": "sq", |
|
"swahili": "sw", "galician": "gl", "marathi": "mr", "punjabi": "pa", "sinhala": "si", "khmer": "km", |
|
"shona": "sn", "yoruba": "yo", "somali": "so", "afrikaans": "af", "occitan": "oc", "georgian": "ka", |
|
"belarusian": "be", "tajik": "tg", "sindhi": "sd", "gujarati": "gu", "amharic": "am", "yiddish": "yi", |
|
"lao": "lo", "uzbek": "uz", "faroese": "fo", "haitian creole": "ht", "pashto": "ps", "turkmen": "tk", |
|
"nynorsk": "nn", "maltese": "mt", "sanskrit": "sa", "luxembourgish": "lb", "myanmar": "my", "tibetan": "bo", |
|
"tagalog": "tl", "malagasy": "mg", "assamese": "as", "tatar": "tt", "hawaiian": "haw", "lingala": "ln", |
|
"hausa": "ha", "bashkir": "ba", "javanese": "jv", "sundanese": "su" |
|
} |
|
|
|
return lookup.get(language.lower() if language is not None else None, language) |
|
|