Spaces:
Runtime error
Runtime error
File size: 69,552 Bytes
32f0b26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 |
"""
UTILS FILE
"""
import random
import json
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import pickle
import os
import mne
from surprise import Dataset, Reader, SVD, accuracy, KNNBasic, KNNWithMeans, KNNWithZScore
from surprise.model_selection import train_test_split
from sklearn.utils import resample
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from scipy import stats
import math
import altair as alt
import matplotlib.pyplot as plt
import time
from sentence_transformers import SentenceTransformer, util
import torch
from bertopic import BERTopic
########################################
# PRE-LOADING
YOUR_COLOR = '#6CADFD'
OTHER_USERS_COLOR = '#ccc'
BINS = [0, 0.5, 1.5, 2.5, 3.5, 4]
BIN_LABELS = ['0: Not at all toxic', '1: Slightly toxic', '2: Moderately toxic', '3: Very toxic', '4: Extremely toxic']
TOXIC_THRESHOLD = 2.0
alt.renderers.enable('altair_saver', fmts=['vega-lite', 'png'])
# Data-loading
module_dir = "./"
perf_dir = f"data/perf/"
# # TEMP reset
# with open(os.path.join(module_dir, "./data/all_model_names.pkl"), "wb") as f:
# all_model_names = []
# pickle.dump(all_model_names, f)
# with open(f"./data/users_to_models.pkl", "wb") as f:
# users_to_models = {}
# pickle.dump(users_to_models, f)
with open(os.path.join(module_dir, "data/ids_to_comments.pkl"), "rb") as f:
ids_to_comments = pickle.load(f)
with open(os.path.join(module_dir, "data/comments_to_ids.pkl"), "rb") as f:
comments_to_ids = pickle.load(f)
all_model_names = sorted([name for name in os.listdir(os.path.join(perf_dir)) if os.path.isdir(os.path.join(perf_dir, name))])
comments_grouped_full_topic_cat = pd.read_pickle("data/comments_grouped_full_topic_cat2_persp.pkl")
sys_eval_df = pd.read_pickle(os.path.join(module_dir, "data/split_data/sys_eval_df.pkl"))
train_df = pd.read_pickle(os.path.join(module_dir, "data/split_data/train_df.pkl"))
train_df_ids = train_df["item_id"].unique().tolist()
model_eval_df = pd.read_pickle(os.path.join(module_dir, "data/split_data/model_eval_df.pkl"))
ratings_df_full = pd.read_pickle(os.path.join(module_dir, "data/ratings_df_full.pkl"))
worker_info_df = pd.read_pickle("./data/worker_info_df.pkl")
with open(f"./data/users_to_models.pkl", "rb") as f:
users_to_models = pickle.load(f)
with open("data/perf_1000_topics.pkl", "rb") as f:
perf_1000_topics = pickle.load(f)
with open("data/perf_1000_tox_cat.pkl", "rb") as f:
perf_1000_tox_cat = pickle.load(f)
with open("data/perf_1000_tox_severity.pkl", "rb") as f:
perf_1000_tox_severity = pickle.load(f)
with open("data/user_perf_metrics.pkl", "rb") as f:
user_perf_metrics = pickle.load(f)
topic_ids = comments_grouped_full_topic_cat.topic_id
topics = comments_grouped_full_topic_cat.topic
topic_ids_to_topics = {topic_ids[i]: topics[i] for i in range(len(topic_ids))}
topics_to_topic_ids = {topics[i]: topic_ids[i] for i in range(len(topic_ids))}
unique_topics_ids = sorted(comments_grouped_full_topic_cat.topic_id.unique())
unique_topics = [topic_ids_to_topics[topic_id] for topic_id in range(len(topic_ids_to_topics) - 1)]
def get_toxic_threshold():
return TOXIC_THRESHOLD
def get_all_model_names(user=None):
if (user is None) or (user not in users_to_models):
all_model_names = sorted([name for name in os.listdir(os.path.join(perf_dir)) if os.path.isdir(os.path.join(perf_dir, name))])
return all_model_names
else:
# Fetch the user's models
user_models = users_to_models[user]
user_models.sort()
return user_models
def get_unique_topics():
return unique_topics
def get_large_clusters(min_n):
counts_df = comments_grouped_full_topic_cat.groupby(by=["topic_id"]).size().reset_index(name='counts')
counts_df = counts_df[counts_df["counts"] >= min_n]
return [topic_ids_to_topics[t_id] for t_id in sorted(counts_df["topic_id"].tolist()[1:])]
def get_ids_to_comments():
return ids_to_comments
def get_workers_in_group(sel_gender, sel_race, sel_relig, sel_pol, sel_lgbtq):
df = worker_info_df.copy()
if sel_gender != "null":
df = df[df["gender"] == sel_gender]
if sel_relig != "null":
df = df[df["religion_important"] == sel_relig]
if sel_pol != "null":
df = df[df["political_affilation"] == sel_pol]
if sel_lgbtq != "null":
if sel_lgbtq == "LGBTQ+":
df = df[(df["lgbtq_status"] == "Homosexual") | (df["lgbtq_status"] == "Bisexual")]
else:
df = df[df["lgbtq_status"] == "Heterosexual"]
if sel_race != "":
df = df.dropna(subset=['race'])
for r in sel_race:
# Filter to rows with the indicated race
df = df[df["race"].str.contains(r)]
return df, len(df)
readable_to_internal = {
"Mean Absolute Error (MAE)": "MAE",
"Root Mean Squared Error (RMSE)": "RMSE",
"Mean Squared Error (MSE)": "MSE",
"Average rating difference": "avg_diff",
"Topic": "topic",
"Toxicity Category": "toxicity_category",
"Toxicity Severity": "toxicity_severity",
}
internal_to_readable = {v: k for k, v in readable_to_internal.items()}
# Embeddings for neighbor retrieval
model_name = "paraphrase-MiniLM-L6-v2"
model = SentenceTransformer(model_name)
with open("./data/comments.pkl", "rb") as f:
comments = pickle.load(f)
embeddings = torch.load("./data/embeddings/21_10_embeddings.pt")
# Perspective API recalibration
def recalib_v1(s):
# convert Perspective score to 0-4 toxicity score
# map 0 persp to 0 (not at all toxic); 0.5 persp to 1 (slightly toxic), 1.0 persp to 4 (extremely toxic)
if s < 0.5:
return (s * 2.)
else:
return ((s - 0.5) * 6.) + 1
def recalib_v2(s):
# convert Perspective score to 0-4 toxicity score
# just 4x the perspective score
return (s * 4.)
comments_grouped_full_topic_cat["rating_avg_orig"] = comments_grouped_full_topic_cat["rating"]
comments_grouped_full_topic_cat["rating"] = [recalib_v2(score) for score in comments_grouped_full_topic_cat["persp_score"].tolist()]
def get_comments_grouped_full_topic_cat():
return comments_grouped_full_topic_cat
########################################
# General utils
def get_metric_ind(metric):
if metric == "MAE":
ind = 0
elif metric == "MSE":
ind = 1
elif metric == "RMSE":
ind = 2
elif metric == "avg_diff":
ind = 3
return ind
def my_bootstrap(vals, n_boot, alpha):
bs_samples = []
sample_size = len(vals)
for i in range(n_boot):
samp = resample(vals, n_samples=sample_size)
bs_samples.append(np.median(samp))
p = ((1.0 - alpha) / 2.0) * 100
ci_low = np.percentile(bs_samples, p)
p = (alpha + ((1.0 - alpha) / 2.0)) * 100
ci_high = np.percentile(bs_samples, p)
return bs_samples, (ci_low, ci_high)
########################################
# GET_AUDIT utils
def other_users_perf(perf_metrics, metric, user_metric, alpha=0.95, n_boot=501):
ind = get_metric_ind(metric)
metric_vals = [metric_vals[ind] for metric_vals in perf_metrics.values()]
metric_avg = np.median(metric_vals)
# Future: use provided sample to perform bootstrap sampling
ci_1 = mne.stats.bootstrap_confidence_interval(np.array(metric_vals), ci=alpha, n_bootstraps=n_boot, stat_fun="median")
bs_samples, ci = my_bootstrap(metric_vals, n_boot, alpha)
# Get user's percentile
percentile = stats.percentileofscore(bs_samples, user_metric)
return metric_avg, ci, percentile, metric_vals
def plot_metric_histogram(metric, user_metric, other_metric_vals, n_bins=10):
hist, bin_edges = np.histogram(other_metric_vals, bins=n_bins, density=False)
data = pd.DataFrame({
"bin_min": bin_edges[:-1],
"bin_max": bin_edges[1:],
"bin_count": hist,
"user_metric": [user_metric for i in range(len(hist))]
})
base = alt.Chart(data)
bar = base.mark_bar(color=OTHER_USERS_COLOR).encode(
x=alt.X("bin_min", bin="binned", title=internal_to_readable[metric]),
x2='bin_max',
y=alt.Y("bin_count", title="Number of users"),
tooltip=[
alt.Tooltip('bin_min', title=f'{metric} bin min', format=".2f"),
alt.Tooltip('bin_max', title=f'{metric} bin max', format=".2f"),
alt.Tooltip('bin_count', title=f'Number of OTHER users', format=","),
]
)
rule = base.mark_rule(color=YOUR_COLOR).encode(
x = "mean(user_metric):Q",
size=alt.value(2),
tooltip=[
alt.Tooltip('mean(user_metric)', title=f'{metric} with YOUR labels', format=".2f"),
]
)
return (bar + rule).interactive()
def get_toxicity_severity_bins(perf_metric, user_df, other_dfs, bins=BINS, bin_labels=BIN_LABELS, ci=0.95, n_boot=501):
# Note: not using other_dfs anymore
y_user = []
y_other = []
used_bins = []
other_ci_low = []
other_ci_high = []
for severity_i in range(len(bin_labels)):
metric_others = [metrics[get_metric_ind(perf_metric)] for metrics in perf_1000_tox_severity[severity_i].values() if metrics[get_metric_ind(perf_metric)]]
ci_low, ci_high = mne.stats.bootstrap_confidence_interval(np.array(metric_others), ci=ci, n_bootstraps=n_boot, stat_fun='median')
metric_other = np.median(metric_others)
cur_user_df = user_df[user_df["prediction_bin"] == severity_i]
y_true_user = cur_user_df.pred.to_numpy() # user's label
y_pred = cur_user_df.rating_avg.to_numpy() # system's label (avg)
if len(y_true_user) > 0:
used_bins.append(bin_labels[severity_i])
metric_user = calc_metric_user(y_true_user, y_pred, perf_metric)
y_user.append(metric_user)
y_other.append(metric_other)
other_ci_low.append(ci_low)
other_ci_high.append(ci_high)
return y_user, y_other, used_bins, other_ci_low, other_ci_high
def get_topic_bins(perf_metric, user_df, other_dfs, n_topics, ci=0.95, n_boot=501):
# Note: not using other_dfs anymore
y_user = []
y_other = []
used_bins = []
other_ci_low = []
other_ci_high = []
selected_topics = unique_topics_ids[1:(n_topics + 1)]
for topic_id in selected_topics:
cur_topic = topic_ids_to_topics[topic_id]
metric_others = [metrics[get_metric_ind(perf_metric)] for metrics in perf_1000_topics[topic_id].values() if metrics[get_metric_ind(perf_metric)]]
ci_low, ci_high = mne.stats.bootstrap_confidence_interval(np.array(metric_others), ci=ci, n_bootstraps=n_boot, stat_fun='median')
metric_other = np.median(metric_others)
cur_user_df = user_df[user_df["topic"] == cur_topic]
y_true_user = cur_user_df.pred.to_numpy() # user's label
y_pred = cur_user_df.rating_avg.to_numpy() # system's label (avg)
if len(y_true_user) > 0:
used_bins.append(cur_topic)
metric_user = calc_metric_user(y_true_user, y_pred, perf_metric)
y_user.append(metric_user)
y_other.append(metric_other)
other_ci_low.append(ci_low)
other_ci_high.append(ci_high)
return y_user, y_other, used_bins, other_ci_low, other_ci_high
def calc_metric_user(y_true_user, y_pred, perf_metric):
if perf_metric == "MAE":
metric_user = mean_absolute_error(y_true_user, y_pred)
elif perf_metric == "MSE":
metric_user = mean_squared_error(y_true_user, y_pred)
elif perf_metric == "RMSE":
metric_user = mean_squared_error(y_true_user, y_pred, squared=False)
elif perf_metric == "avg_diff":
metric_user = np.mean(y_true_user - y_pred)
return metric_user
def get_toxicity_category_bins(perf_metric, user_df, other_dfs, threshold=0.5, ci=0.95, n_boot=501):
# Note: not using other_dfs anymore; threshold from pre-calculation is 0.5
cat_cols = ["is_profane_frac", "is_threat_frac", "is_identity_attack_frac", "is_insult_frac", "is_sexual_harassment_frac"]
cat_labels = ["Profanity", "Threats", "Identity Attacks", "Insults", "Sexual Harassment"]
y_user = []
y_other = []
used_bins = []
other_ci_low = []
other_ci_high = []
for i, cur_col_name in enumerate(cat_cols):
metric_others = [metrics[get_metric_ind(perf_metric)] for metrics in perf_1000_tox_cat[cur_col_name].values() if metrics[get_metric_ind(perf_metric)]]
ci_low, ci_high = mne.stats.bootstrap_confidence_interval(np.array(metric_others), ci=ci, n_bootstraps=n_boot, stat_fun='median')
metric_other = np.median(metric_others)
# Filter to rows where a comment received an average label >= the provided threshold for the category
cur_user_df = user_df[user_df[cur_col_name] >= threshold]
y_true_user = cur_user_df.pred.to_numpy() # user's label
y_pred = cur_user_df.rating_avg.to_numpy() # system's label (avg)
if len(y_true_user) > 0:
used_bins.append(cat_labels[i])
metric_user = calc_metric_user(y_true_user, y_pred, perf_metric)
y_user.append(metric_user)
y_other.append(metric_other)
other_ci_low.append(ci_low)
other_ci_high.append(ci_high)
return y_user, y_other, used_bins, other_ci_low, other_ci_high
def plot_class_cond_results(preds_df, breakdown_axis, perf_metric, other_ids, sort_bars, n_topics, worker_id="A"):
# Note: preds_df already has binned results
# Prepare dfs
user_df = preds_df[preds_df.user_id == worker_id].sort_values(by=["item_id"]).reset_index()
other_dfs = [preds_df[preds_df.user_id == other_id].sort_values(by=["item_id"]).reset_index() for other_id in other_ids]
if breakdown_axis == "toxicity_severity":
y_user, y_other, used_bins, other_ci_low, other_ci_high = get_toxicity_severity_bins(perf_metric, user_df, other_dfs)
elif breakdown_axis == "topic":
y_user, y_other, used_bins, other_ci_low, other_ci_high = get_topic_bins(perf_metric, user_df, other_dfs, n_topics)
elif breakdown_axis == "toxicity_category":
y_user, y_other, used_bins, other_ci_low, other_ci_high = get_toxicity_category_bins(perf_metric, user_df, other_dfs)
diffs = list(np.array(y_user) - np.array(y_other))
# Generate bar chart
data = pd.DataFrame({
"metric_val": y_user + y_other,
"Labeler": ["You" for _ in range(len(y_user))] + ["Other users" for _ in range(len(y_user))],
"used_bins": used_bins + used_bins,
"diffs": diffs + diffs,
"lower_cis": y_user + other_ci_low,
"upper_cis": y_user + other_ci_high,
})
color_domain = ['You', 'Other users']
color_range = [YOUR_COLOR, OTHER_USERS_COLOR]
base = alt.Chart()
chart_title=f"{internal_to_readable[breakdown_axis]} Results"
x_axis = alt.X("Labeler:O", sort=("You", "Other users"), title=None, axis=None)
y_axis = alt.Y("metric_val:Q", title=internal_to_readable[perf_metric])
if sort_bars:
col_content = alt.Column("used_bins:O", sort=alt.EncodingSortField(field="diffs", op="mean", order='descending'))
else:
col_content = alt.Column("used_bins:O")
if n_topics is not None and n_topics > 10:
# Change to horizontal bar chart
bar = base.mark_bar(lineBreak="_").encode(
y=x_axis,
x=y_axis,
color=alt.Color("Labeler:O", scale=alt.Scale(domain=color_domain, range=color_range)),
tooltip=[
alt.Tooltip('Labeler:O', title='Labeler'),
alt.Tooltip('metric_val:Q', title=perf_metric, format=".3f"),
]
)
error_bars = base.mark_errorbar().encode(
y=x_axis,
x = alt.X("lower_cis:Q", title=internal_to_readable[perf_metric]),
x2 = alt.X2("upper_cis:Q", title=None),
tooltip=[
alt.Tooltip('lower_cis:Q', title='Lower CI', format=".3f"),
alt.Tooltip('upper_cis:Q', title='Upper CI', format=".3f"),
]
)
combined = alt.layer(
bar, error_bars, data=data
).facet(
row=col_content
).properties(
title=chart_title,
).interactive()
else:
bar = base.mark_bar(lineBreak="_").encode(
x=x_axis,
y=y_axis,
color=alt.Color("Labeler:O", scale=alt.Scale(domain=color_domain, range=color_range)),
tooltip=[
alt.Tooltip('Labeler:O', title='Labeler'),
alt.Tooltip('metric_val:Q', title=perf_metric, format=".3f"),
]
)
error_bars = base.mark_errorbar().encode(
x=x_axis,
y = alt.Y("lower_cis:Q", title=internal_to_readable[perf_metric]),
y2 = alt.Y2("upper_cis:Q", title=None),
tooltip=[
alt.Tooltip('lower_cis:Q', title='Lower CI', format=".3f"),
alt.Tooltip('upper_cis:Q', title='Upper CI', format=".3f"),
]
)
combined = alt.layer(
bar, error_bars, data=data
).facet(
column=col_content
).properties(
title=chart_title,
).interactive()
return combined
def show_overall_perf(variant, error_type, cur_user, threshold=TOXIC_THRESHOLD, breakdown_axis=None, topic_vis_method="median"):
# Your perf (calculate using model and testset)
breakdown_axis = readable_to_internal[breakdown_axis]
if breakdown_axis is not None:
with open(os.path.join(module_dir, f"data/preds_dfs/{variant}.pkl"), "rb") as f:
preds_df = pickle.load(f)
# Read from file
chart_dir = "./data/charts"
chart_file = os.path.join(chart_dir, f"{cur_user}_{variant}.pkl")
if os.path.isfile(chart_file):
with open(chart_file, "r") as f:
topic_overview_plot_json = json.load(f)
else:
preds_df_mod = preds_df.merge(comments_grouped_full_topic_cat, on="item_id", how="left", suffixes=('_', '_avg'))
if topic_vis_method == "median":
preds_df_mod_grp = preds_df_mod.groupby(["topic_", "user_id"]).median()
elif topic_vis_method == "mean":
preds_df_mod_grp = preds_df_mod.groupby(["topic_", "user_id"]).mean()
topic_overview_plot_json = plot_overall_vis(preds_df=preds_df_mod_grp, n_topics=200, threshold=threshold, error_type=error_type, cur_user=cur_user, cur_model=variant)
return {
"topic_overview_plot_json": json.loads(topic_overview_plot_json),
}
########################################
# GET_CLUSTER_RESULTS utils
def get_overall_perf3(preds_df, perf_metric, other_ids, worker_id="A"):
# Prepare dataset to calculate performance
# Note: true is user and pred is system
y_true = preds_df[preds_df["user_id"] == worker_id].pred.to_numpy()
y_pred_user = preds_df[preds_df["user_id"] == worker_id].rating_avg.to_numpy()
y_true_others = y_pred_others = [preds_df[preds_df["user_id"] == other_id].pred.to_numpy() for other_id in other_ids]
y_pred_others = [preds_df[preds_df["user_id"] == other_id].rating_avg.to_numpy() for other_id in other_ids]
# Get performance for user's model and for other users
if perf_metric == "MAE":
user_perf = mean_absolute_error(y_true, y_pred_user)
other_perfs = [mean_absolute_error(y_true_others[i], y_pred_others[i]) for i in range(len(y_true_others))]
elif perf_metric == "MSE":
user_perf = mean_squared_error(y_true, y_pred_user)
other_perfs = [mean_squared_error(y_true_others[i], y_pred_others[i]) for i in range(len(y_true_others))]
elif perf_metric == "RMSE":
user_perf = mean_squared_error(y_true, y_pred_user, squared=False)
other_perfs = [mean_squared_error(y_true_others[i], y_pred_others[i], squared=False) for i in range(len(y_true_others))]
elif perf_metric == "avg_diff":
user_perf = np.mean(y_true - y_pred_user)
other_perfs = [np.mean(y_true_others[i] - y_pred_others[i]) for i in range(len(y_true_others))]
other_perf = np.mean(other_perfs) # average across all other users
return user_perf, other_perf
def style_color_difference(row):
full_opacity_diff = 3.
pred_user_col = "Your predicted rating"
pred_other_col = "Other users' predicted rating"
pred_system_col = "Status-quo system rating"
diff_user = row[pred_user_col] - row[pred_system_col]
diff_other = row[pred_other_col] - row[pred_system_col]
red = "234, 133, 125"
green = "142, 205, 162"
bkgd_user = green if diff_user < 0 else red # red if more toxic; green if less toxic
opac_user = min(abs(diff_user / full_opacity_diff), 1.)
bkgd_other = green if diff_other < 0 else red # red if more toxic; green if less toxic
opac_other = min(abs(diff_other / full_opacity_diff), 1.)
return ["", f"background-color: rgba({bkgd_user}, {opac_user});", f"background-color: rgba({bkgd_other}, {opac_other});", "", ""]
def display_examples_cluster(preds_df, other_ids, num_examples, sort_ascending, worker_id="A"):
user_df = preds_df[preds_df.user_id == worker_id].sort_values(by=["item_id"]).reset_index()
others_df = preds_df[preds_df.user_id == other_ids[0]]
for i in range(1, len(other_ids)):
others_df.append(preds_df[preds_df.user_id == other_ids[i]])
others_df.groupby(["item_id"]).mean()
others_df = others_df.sort_values(by=["item_id"]).reset_index()
df = pd.merge(user_df, others_df, on="item_id", how="left", suffixes=('_user', '_other'))
df["Comment"] = df["comment_user"]
df["Your predicted rating"] = df["pred_user"]
df["Other users' predicted rating"] = df["pred_other"]
df["Status-quo system rating"] = df["rating_avg_user"]
df["Status-quo system std dev"] = df["rating_stddev_user"]
df = df[["Comment", "Your predicted rating", "Other users' predicted rating", "Status-quo system rating", "Status-quo system std dev"]]
# Add styling
df = df.sort_values(by=['Status-quo system std dev'], ascending=sort_ascending)
n_to_sample = np.min([num_examples, len(df)])
df = df.sample(n=n_to_sample).reset_index(drop=True)
return df.style.apply(style_color_difference, axis=1).render()
def calc_odds_ratio(df, comparison_group, toxic_threshold=1.5, worker_id="A", debug=False, smoothing_factor=1):
if comparison_group == "status_quo":
other_pred_col = "rating_avg"
# Get unique comments, but fetch average labeler rating
num_toxic_other = len(df[(df.user_id == "A") & (df[other_pred_col] >= toxic_threshold)]) + smoothing_factor
num_nontoxic_other = len(df[(df.user_id == "A") & (df[other_pred_col] < toxic_threshold)]) + smoothing_factor
elif comparison_group == "other_users":
other_pred_col = "pred"
num_toxic_other = len(df[(df.user_id != "A") & (df[other_pred_col] >= toxic_threshold)]) + smoothing_factor
num_nontoxic_other = len(df[(df.user_id != "A") & (df[other_pred_col] < toxic_threshold)]) + smoothing_factor
num_toxic_user = len(df[(df.user_id == "A") & (df.pred >= toxic_threshold)]) + smoothing_factor
num_nontoxic_user = len(df[(df.user_id == "A") & (df.pred < toxic_threshold)]) + smoothing_factor
toxic_ratio = num_toxic_user / num_toxic_other
nontoxic_ratio = num_nontoxic_user / num_nontoxic_other
odds_ratio = toxic_ratio / nontoxic_ratio
if debug:
print(f"Odds ratio: {odds_ratio}")
print(f"num_toxic_user: {num_toxic_user}, num_nontoxic_user: {num_nontoxic_user}")
print(f"num_toxic_other: {num_toxic_other}, num_nontoxic_other: {num_nontoxic_other}")
contingency_table = [[num_toxic_user, num_nontoxic_user], [num_toxic_other, num_nontoxic_other]]
odds_ratio, p_val = stats.fisher_exact(contingency_table, alternative='two-sided')
if debug:
print(f"Odds ratio: {odds_ratio}, p={p_val}")
return odds_ratio
# Neighbor search
def get_match(comment_inds, K=20, threshold=None, debug=False):
match_ids = []
rows = []
for i in comment_inds:
if debug:
print(f"\nComment: {comments[i]}")
query_embedding = model.encode(comments[i], convert_to_tensor=True)
hits = util.semantic_search(query_embedding, embeddings, score_function=util.cos_sim, top_k=K)
# print(hits[0])
for hit in hits[0]:
c_id = hit['corpus_id']
score = np.round(hit['score'], 3)
if threshold is None or score > threshold:
match_ids.append(c_id)
if debug:
print(f"\t(ID={c_id}, Score={score}): {comments[c_id]}")
rows.append([c_id, score, comments[c_id]])
df = pd.DataFrame(rows, columns=["id", "score", "comment"])
return match_ids
def display_examples_auto_cluster(preds_df, cluster, other_ids, perf_metric, sort_ascending=True, worker_id="A", num_examples=10):
# Overall performance
topic_df = preds_df
topic_df = topic_df[topic_df["topic"] == cluster]
user_perf, other_perf = get_overall_perf3(topic_df, perf_metric, other_ids)
user_direction = "LOWER" if user_perf < 0 else "HIGHER"
other_direction = "LOWER" if other_perf < 0 else "HIGHER"
print(f"Your ratings are on average {np.round(abs(user_perf), 3)} {user_direction} than the existing system for this cluster")
print(f"Others' ratings (based on {len(other_ids)} users) are on average {np.round(abs(other_perf), 3)} {other_direction} than the existing system for this cluster")
# Display example comments
df = display_examples_cluster(preds_df, other_ids, num_examples, sort_ascending)
return df
# function to get results for a new provided cluster
def display_examples_manual_cluster(preds_df, cluster_comments, other_ids, perf_metric, sort_ascending=True, worker_id="A"):
# Overall performance
cluster_df = preds_df[preds_df["comment"].isin(cluster_comments)]
user_perf, other_perf = get_overall_perf3(cluster_df, perf_metric, other_ids)
user_direction = "LOWER" if user_perf < 0 else "HIGHER"
other_direction = "LOWER" if other_perf < 0 else "HIGHER"
print(f"Your ratings are on average {np.round(abs(user_perf), 3)} {user_direction} than the existing system for this cluster")
print(f"Others' ratings (based on {len(other_ids)} users) are on average {np.round(abs(other_perf), 3)} {other_direction} than the existing system for this cluster")
user_df = preds_df[preds_df.user_id == worker_id].sort_values(by=["item_id"]).reset_index()
others_df = preds_df[preds_df.user_id == other_ids[0]]
for i in range(1, len(other_ids)):
others_df.append(preds_df[preds_df.user_id == other_ids[i]])
others_df.groupby(["item_id"]).mean()
others_df = others_df.sort_values(by=["item_id"]).reset_index()
# Get cluster_comments
user_df = user_df[user_df["comment"].isin(cluster_comments)]
others_df = others_df[others_df["comment"].isin(cluster_comments)]
df = pd.merge(user_df, others_df, on="item_id", how="left", suffixes=('_user', '_other'))
df["pred_system"] = df["rating_avg_user"]
df["pred_system_stddev"] = df["rating_stddev_user"]
df = df[["item_id", "comment_user", "pred_user", "pred_other", "pred_system", "pred_system_stddev"]]
# Add styling
df = df.sort_values(by=['pred_system_stddev'], ascending=sort_ascending)
df = df.style.apply(style_color_difference, axis=1).render()
return df
########################################
# GET_LABELING utils
def create_example_sets(comments_df, n_label_per_bin, score_bins, keyword=None, topic=None):
# Restrict to the keyword, if provided
df = comments_df.copy()
if keyword != None:
df = df[df["comment"].str.contains(keyword)]
if topic != None:
df = df[df["topic"] == topic]
# Try to choose n values from each provided score bin
ex_to_label = []
bin_names = []
bin_label_counts = []
for i, score_bin in enumerate(score_bins):
min_score, max_score = score_bin
cur_df = df[(df["rating"] >= min_score) & (df["rating"] < max_score) & (df["item_id"].isin(train_df_ids))]
# sample rows for label
comment_ids = cur_df.item_id.tolist()
cur_n_label_per_bin = n_label_per_bin[i]
cap = min(len(comment_ids), (cur_n_label_per_bin))
to_label = np.random.choice(comment_ids, cap, replace=False)
ex_to_label.extend(to_label)
bin_names.append(f"[{min_score}, {max_score})")
bin_label_counts.append(len(to_label))
return ex_to_label
def get_grp_model_labels(comments_df, n_label_per_bin, score_bins, grp_ids):
df = comments_df.copy()
train_df_grp = train_df[train_df["user_id"].isin(grp_ids)]
train_df_grp_avg = train_df_grp.groupby(by=["item_id"]).median().reset_index()
train_df_grp_avg_ids = train_df_grp_avg["item_id"].tolist()
ex_to_label = [] # IDs of comments to use for group model training
for i, score_bin in enumerate(score_bins):
min_score, max_score = score_bin
# get eligible comments to sample
cur_df = df[(df["rating"] >= min_score) & (df["rating"] < max_score) & (df["item_id"].isin(train_df_grp_avg_ids))]
comment_ids = cur_df.item_id.unique().tolist()
# sample comments
cur_n_label_per_bin = n_label_per_bin[i]
cap = min(len(comment_ids), (cur_n_label_per_bin))
to_label = np.random.choice(comment_ids, cap, replace=False)
ex_to_label.extend((to_label))
train_df_grp_avg = train_df_grp_avg[train_df_grp_avg["item_id"].isin(ex_to_label)]
ratings_grp = {ids_to_comments[int(r["item_id"])]: r["rating"] for _, r in train_df_grp_avg.iterrows()}
return ratings_grp
########################################
# GET_PERSONALIZED_MODEL utils
def fetch_existing_data(model_name, last_label_i):
# Check if we have cached model performance
perf_dir = f"./data/perf/{model_name}"
label_dir = f"./data/labels/{model_name}"
if os.path.isdir(os.path.join(module_dir, perf_dir)):
# Fetch cached results
last_i = len([name for name in os.listdir(os.path.join(module_dir, perf_dir)) if os.path.isfile(os.path.join(module_dir, perf_dir, name))])
with open(os.path.join(module_dir, perf_dir, f"{last_i}.pkl"), "rb") as f:
mae, mse, rmse, avg_diff = pickle.load(f)
else:
# Fetch results from trained model
with open(os.path.join(module_dir, f"./data/trained_models/{model_name}.pkl"), "rb") as f:
cur_model = pickle.load(f)
mae, mse, rmse, avg_diff = users_perf(cur_model)
# Cache results
os.mkdir(os.path.join(module_dir, perf_dir))
with open(os.path.join(module_dir, perf_dir, "1.pkl"), "wb") as f:
pickle.dump((mae, mse, rmse, avg_diff), f)
# Fetch previous user-provided labels
ratings_prev = None
if last_label_i > 0:
with open(os.path.join(module_dir, label_dir, f"{last_i}.pkl"), "rb") as f:
ratings_prev = pickle.load(f)
return mae, mse, rmse, avg_diff, ratings_prev
def train_updated_model(model_name, last_label_i, ratings, user, top_n=20, topic=None):
# Check if there is previously-labeled data; if so, combine it with this data
perf_dir = f"./data/perf/{model_name}"
label_dir = f"./data/labels/{model_name}"
labeled_df = format_labeled_data(ratings) # Treat ratings as full batch of all ratings
ratings_prev = None
# Filter out rows with "unsure" (-1)
labeled_df = labeled_df[labeled_df["rating"] != -1]
# Filter to top N for user study
if topic is None:
# labeled_df = labeled_df.head(top_n)
labeled_df = labeled_df.tail(top_n)
else:
# For topic tuning, need to fetch old labels
if (last_label_i > 0):
# Concatenate previous set of labels with this new batch of labels
with open(os.path.join(module_dir, label_dir, f"{last_label_i}.pkl"), "rb") as f:
ratings_prev = pickle.load(f)
labeled_df_prev = format_labeled_data(ratings_prev)
labeled_df_prev = labeled_df_prev[labeled_df_prev["rating"] != -1]
ratings.update(ratings_prev) # append old ratings to ratings
labeled_df = pd.concat([labeled_df_prev, labeled_df])
print("len ratings for training:", len(labeled_df))
cur_model, perf, _, _ = train_user_model(ratings_df=labeled_df)
user_perf_metrics[model_name] = users_perf(cur_model)
mae, mse, rmse, avg_diff = user_perf_metrics[model_name]
cur_preds_df = get_preds_df(cur_model, ["A"], sys_eval_df=ratings_df_full, topic=topic, model_name=model_name) # Just get results for user
# Save this batch of labels
with open(os.path.join(module_dir, label_dir, f"{last_label_i + 1}.pkl"), "wb") as f:
pickle.dump(ratings, f)
# Save model results
with open(os.path.join(module_dir, f"./data/preds_dfs/{model_name}.pkl"), "wb") as f:
pickle.dump(cur_preds_df, f)
if model_name not in all_model_names:
all_model_names.append(model_name)
with open(os.path.join(module_dir, "./data/all_model_names.pkl"), "wb") as f:
pickle.dump(all_model_names, f)
# Handle user
if user not in users_to_models:
users_to_models[user] = [] # New user
if model_name not in users_to_models[user]:
users_to_models[user].append(model_name) # New model
with open(f"./data/users_to_models.pkl", "wb") as f:
pickle.dump(users_to_models, f)
with open(os.path.join(module_dir, "./data/user_perf_metrics.pkl"), "wb") as f:
pickle.dump(user_perf_metrics, f)
with open(os.path.join(module_dir, f"./data/trained_models/{model_name}.pkl"), "wb") as f:
pickle.dump(cur_model, f)
# Cache performance results
if not os.path.isdir(os.path.join(module_dir, perf_dir)):
os.mkdir(os.path.join(module_dir, perf_dir))
last_perf_i = len([name for name in os.listdir(os.path.join(module_dir, perf_dir)) if os.path.isfile(os.path.join(module_dir, perf_dir, name))])
with open(os.path.join(module_dir, perf_dir, f"{last_perf_i + 1}.pkl"), "wb") as f:
pickle.dump((mae, mse, rmse, avg_diff), f)
ratings_prev = ratings
return mae, mse, rmse, avg_diff, ratings_prev
def format_labeled_data(ratings, worker_id="A", debug=False):
all_rows = []
for comment, rating in ratings.items():
comment_id = comments_to_ids[comment]
row = [worker_id, comment_id, int(rating)]
all_rows.append(row)
df = pd.DataFrame(all_rows, columns=["user_id", "item_id", "rating"])
return df
def users_perf(model, sys_eval_df=sys_eval_df, avg_ratings_df=comments_grouped_full_topic_cat, worker_id="A"):
# Load the full empty dataset
sys_eval_comment_ids = sys_eval_df.item_id.unique().tolist()
empty_ratings_rows = [[worker_id, c_id, 0] for c_id in sys_eval_comment_ids]
empty_ratings_df = pd.DataFrame(empty_ratings_rows, columns=["user_id", "item_id", "rating"])
# Compute predictions for full dataset
reader = Reader(rating_scale=(0, 4))
eval_set_data = Dataset.load_from_df(empty_ratings_df, reader)
_, testset = train_test_split(eval_set_data, test_size=1.)
predictions = model.test(testset)
df = empty_ratings_df # user_id, item_id, rating
user_item_preds = get_predictions_by_user_and_item(predictions)
df["pred"] = df.apply(lambda row: user_item_preds[(row.user_id, row.item_id)] if (row.user_id, row.item_id) in user_item_preds else np.nan, axis=1)
df = df.merge(avg_ratings_df, on="item_id", how="left", suffixes=('_', '_avg'))
df.dropna(subset = ["pred"], inplace=True)
df["rating_"] = df.rating_.astype("int32")
perf_metrics = get_overall_perf(df, "A") # mae, mse, rmse, avg_diff
return perf_metrics
def get_overall_perf(preds_df, user_id):
# Prepare dataset to calculate performance
y_pred = preds_df[preds_df["user_id"] == user_id].rating_avg.to_numpy() # Assume system is just average of true labels
y_true = preds_df[preds_df["user_id"] == user_id].pred.to_numpy()
# Get performance for user's model
mae = mean_absolute_error(y_true, y_pred)
mse = mean_squared_error(y_true, y_pred)
rmse = mean_squared_error(y_true, y_pred, squared=False)
avg_diff = np.mean(y_true - y_pred)
return mae, mse, rmse, avg_diff
def get_predictions_by_user_and_item(predictions):
user_item_preds = {}
for uid, iid, true_r, est, _ in predictions:
user_item_preds[(uid, iid)] = est
return user_item_preds
def get_preds_df(model, user_ids, orig_df=ratings_df_full, avg_ratings_df=comments_grouped_full_topic_cat, sys_eval_df=sys_eval_df, bins=BINS, topic=None, model_name=None):
# Prep dataframe for all predictions we'd like to request
start = time.time()
sys_eval_comment_ids = sys_eval_df.item_id.unique().tolist()
empty_ratings_rows = []
for user_id in user_ids:
empty_ratings_rows.extend([[user_id, c_id, 0] for c_id in sys_eval_comment_ids])
empty_ratings_df = pd.DataFrame(empty_ratings_rows, columns=["user_id", "item_id", "rating"])
print("setup", time.time() - start)
# Evaluate model to get predictions
start = time.time()
reader = Reader(rating_scale=(0, 4))
eval_set_data = Dataset.load_from_df(empty_ratings_df, reader)
_, testset = train_test_split(eval_set_data, test_size=1.)
predictions = model.test(testset)
print("train_test_split", time.time() - start)
# Update dataframe with predictions
start = time.time()
df = empty_ratings_df.copy() # user_id, item_id, rating
user_item_preds = get_predictions_by_user_and_item(predictions)
df["pred"] = df.apply(lambda row: user_item_preds[(row.user_id, row.item_id)] if (row.user_id, row.item_id) in user_item_preds else np.nan, axis=1)
df = df.merge(avg_ratings_df, on="item_id", how="left", suffixes=('_', '_avg'))
df.dropna(subset = ["pred"], inplace=True)
df["rating_"] = df.rating_.astype("int32")
# Get binned predictions (based on user prediction)
df["prediction_bin"], out_bins = pd.cut(df["pred"], bins, labels=False, retbins=True)
df = df.sort_values(by=["item_id"])
return df
def train_user_model(ratings_df, train_df=train_df, model_eval_df=model_eval_df, train_frac=0.75, model_type="SVD", sim_type=None, user_based=True):
# Sample from shuffled labeled dataframe and add batch to train set; specified set size to model_eval set
labeled = ratings_df.sample(frac=1)
batch_size = math.floor(len(labeled) * train_frac)
labeled_train = labeled[:batch_size]
labeled_model_eval = labeled[batch_size:]
train_df_ext = train_df.append(labeled_train)
model_eval_df_ext = model_eval_df.append(labeled_model_eval)
# Train model and show model eval set results
model, perf = train_model(train_df_ext, model_eval_df_ext, model_type=model_type, sim_type=sim_type, user_based=user_based)
return model, perf, labeled_train, labeled_model_eval
def train_model(train_df, model_eval_df, model_type="SVD", sim_type=None, user_based=True):
# Train model
reader = Reader(rating_scale=(0, 4))
train_data = Dataset.load_from_df(train_df, reader)
model_eval_data = Dataset.load_from_df(model_eval_df, reader)
train_set = train_data.build_full_trainset()
_, model_eval_set = train_test_split(model_eval_data, test_size=1.)
sim_options = {
"name": sim_type,
"user_based": user_based, # compute similarity between users or items
}
if model_type == "SVD":
algo = SVD() # SVD doesn't have similarity metric
elif model_type == "KNNBasic":
algo = KNNBasic(sim_options=sim_options)
elif model_type == "KNNWithMeans":
algo = KNNWithMeans(sim_options=sim_options)
elif model_type == "KNNWithZScore":
algo = KNNWithZScore(sim_options=sim_options)
algo.fit(train_set)
predictions = algo.test(model_eval_set)
rmse = accuracy.rmse(predictions)
fcp = accuracy.fcp(predictions)
mae = accuracy.mae(predictions)
mse = accuracy.mse(predictions)
print(f"MAE: {mae}, MSE: {mse}, RMSE: {rmse}, FCP: {fcp}")
perf = [mae, mse, rmse, fcp]
return algo, perf
def plot_train_perf_results2(model_name):
# Open labels
label_dir = f"./data/labels/{model_name}"
n_label_files = len([name for name in os.listdir(os.path.join(module_dir, label_dir)) if os.path.isfile(os.path.join(module_dir, label_dir, name))])
all_rows = []
with open(os.path.join(module_dir, label_dir, f"{n_label_files}.pkl"), "rb") as f:
ratings = pickle.load(f)
labeled_df = format_labeled_data(ratings)
labeled_df = labeled_df[labeled_df["rating"] != -1]
# Iterate through batches of 5 labels
n_batches = int(np.ceil(len(labeled_df) / 5.))
for i in range(n_batches):
start = time.time()
n_to_sample = np.min([5 * (i + 1), len(labeled_df)])
cur_model, _, _, _ = train_user_model(ratings_df=labeled_df.head(n_to_sample))
mae, mse, rmse, avg_diff = users_perf(cur_model)
all_rows.append([n_to_sample, mae, "MAE"])
print(f"iter {i}: {time.time() - start}")
print("all_rows", all_rows)
df = pd.DataFrame(all_rows, columns=["n_to_sample", "perf", "metric"])
chart = alt.Chart(df).mark_line(point=True).encode(
x=alt.X("n_to_sample:Q", title="Number of Comments Labeled"),
y="perf",
color="metric",
tooltip=[
alt.Tooltip('n_to_sample:Q', title="Number of Comments Labeled"),
alt.Tooltip('metric:N', title="Metric"),
alt.Tooltip('perf:Q', title="Metric Value", format=".3f"),
],
).properties(
title=f"Performance over number of examples: {model_name}",
width=500,
)
return chart
def plot_train_perf_results(model_name, mae):
perf_dir = f"./data/perf/{model_name}"
n_perf_files = len([name for name in os.listdir(os.path.join(module_dir, perf_dir)) if os.path.isfile(os.path.join(module_dir, perf_dir, name))])
all_rows = []
for i in range(1, n_perf_files + 1):
with open(os.path.join(module_dir, perf_dir, f"{i}.pkl"), "rb") as f:
mae, mse, rmse, avg_diff = pickle.load(f)
all_rows.append([i, mae, "Your MAE"])
df = pd.DataFrame(all_rows, columns=["version", "perf", "metric"])
chart = alt.Chart(df).mark_line(point=True).encode(
x="version:O",
y="perf",
color=alt.Color("metric", title="Performance metric"),
tooltip=[
alt.Tooltip('version:O', title='Version'),
alt.Tooltip('metric:N', title="Metric"),
alt.Tooltip('perf:Q', title="Metric Value", format=".3f"),
],
).properties(
title=f"Performance over model versions: {model_name}",
width=500,
)
PCT_50 = 0.591
PCT_75 = 0.662
PCT_90 = 0.869
plot_dim_width = 500
domain_min = 0.0
domain_max = 1.0
bkgd = alt.Chart(pd.DataFrame({
"start": [PCT_90, PCT_75, domain_min],
"stop": [domain_max, PCT_90, PCT_75],
"bkgd": ["Needs improvement (< top 90%)", "Okay (top 90%)", "Good (top 75%)"],
})).mark_rect(opacity=0.2).encode(
y=alt.Y("start:Q", scale=alt.Scale(domain=[0, domain_max])),
y2=alt.Y2("stop:Q"),
x=alt.value(0),
x2=alt.value(plot_dim_width),
color=alt.Color("bkgd:O", scale=alt.Scale(
domain=["Needs improvement (< top 90%)", "Okay (top 90%)", "Good (top 75%)"],
range=["red", "yellow", "green"]),
title="How good is your MAE?"
)
)
plot = (bkgd + chart).properties(width=plot_dim_width).resolve_scale(color='independent')
mae_status = None
if mae < PCT_75:
mae_status = "Your MAE is in the <b>Good</b> range, which means that it's in the top 75% of scores compared to other users. Your model looks good to go."
elif mae < PCT_90:
mae_status = "Your MAE is in the <b>Okay</b> range, which means that it's in the top 90% of scores compared to other users. Your model can be used, but you can provide additional labels to improve it."
else:
mae_status = "Your MAE is in the <b>Needs improvement</b> range, which means that it's in below the top 95% of scores compared to other users. Your model may need additional labels to improve."
return plot, mae_status
########################################
# New visualizations
# Constants
VIS_BINS = np.round(np.arange(0, 4.01, 0.05), 3)
VIS_BINS_LABELS = [np.round(np.mean([x, y]), 3) for x, y in zip(VIS_BINS[:-1], VIS_BINS[1:])]
def get_key(sys, user, threshold):
if sys <= threshold and user <= threshold:
return "System agrees: Non-toxic"
elif sys > threshold and user > threshold:
return "System agrees: Toxic"
else:
if abs(sys - threshold) > 1.5:
return "System differs: Error > 1.5"
elif abs(sys - threshold) > 1.0:
return "System differs: Error > 1.0"
elif abs(sys - threshold) > 0.5:
return "System differs: Error > 0.5"
else:
return "System differs: Error <=0.5"
def get_key_no_model(sys, threshold):
if sys <= threshold:
return "System says: Non-toxic"
else:
return "System says: Toxic"
def get_user_color(user, threshold):
if user <= threshold:
return "#FFF" # white
else:
return "#808080" # grey
def get_system_color(sys, user, threshold):
if sys <= threshold and user <= threshold:
return "#FFF" # white
elif sys > threshold and user > threshold:
return "#808080" # grey
else:
if abs(sys - threshold) > 1.5:
return "#d62728" # red
elif abs(sys - threshold) > 1.0:
return "#ff7a5c" # med red
elif abs(sys - threshold) > 0.5:
return "#ffa894" # light red
else:
return "#ffd1c7" # very light red
def get_error_type(sys, user, threshold):
if sys <= threshold and user <= threshold:
return "No error (agree non-toxic)"
elif sys > threshold and user > threshold:
return "No error (agree toxic)"
elif sys <= threshold and user > threshold:
return "System may be under-sensitive"
elif sys > threshold and user <= threshold:
return "System may be over-sensitive"
def get_error_type_radio(sys, user, threshold):
if sys <= threshold and user <= threshold:
return "Show errors and non-errors"
elif sys > threshold and user > threshold:
return "Show errors and non-errors"
elif sys <= threshold and user > threshold:
return "System is under-sensitive"
elif sys > threshold and user <= threshold:
return "System is over-sensitive"
def get_error_magnitude(sys, user, threshold):
if sys <= threshold and user <= threshold:
return 0 # no classification error
elif sys > threshold and user > threshold:
return 0 # no classification error
elif sys <= threshold and user > threshold:
return abs(sys - user)
elif sys > threshold and user <= threshold:
return abs(sys - user)
def get_error_size(sys, user, threshold):
if sys <= threshold and user <= threshold:
return 0 # no classification error
elif sys > threshold and user > threshold:
return 0 # no classification error
elif sys <= threshold and user > threshold:
return sys - user
elif sys > threshold and user <= threshold:
return sys - user
def get_decision(rating, threshold):
if rating <= threshold:
return "Non-toxic"
else:
return "Toxic"
def get_category(row, threshold=0.3):
k_to_category = {
"is_profane_frac_": "Profanity",
"is_threat_frac_": "Threat",
"is_identity_attack_frac_": "Identity Attack",
"is_insult_frac_": "Insult",
"is_sexual_harassment_frac_": "Sexual Harassment",
}
categories = []
for k in ["is_profane_frac_", "is_threat_frac_", "is_identity_attack_frac_", "is_insult_frac_", "is_sexual_harassment_frac_"]:
if row[k] > threshold:
categories.append(k_to_category[k])
if len(categories) > 0:
return ", ".join(categories)
else:
return ""
def get_comment_url(row):
return f"#{row['item_id']}/#comment"
def get_topic_url(row):
return f"#{row['topic_']}/#topic"
def plot_overall_vis(preds_df, error_type, cur_user, cur_model, n_topics=None, bins=VIS_BINS, threshold=TOXIC_THRESHOLD, bin_step=0.05):
df = preds_df.copy().reset_index()
if n_topics is not None:
df = df[df["topic_id_"] < n_topics]
df["vis_pred_bin"], out_bins = pd.cut(df["pred"], bins, labels=VIS_BINS_LABELS, retbins=True)
df = df[df["user_id"] == "A"].sort_values(by=["item_id"]).reset_index()
df["system_label"] = [("toxic" if r > threshold else "non-toxic") for r in df["rating"].tolist()]
df["threshold"] = [threshold for r in df["rating"].tolist()]
df["key"] = [get_key(sys, user, threshold) for sys, user in zip(df["rating"].tolist(), df["pred"].tolist())]
df["url"] = df.apply(lambda row: get_topic_url(row), axis=1)
# Plot sizing
domain_min = 0
domain_max = 4
plot_dim_height = 500
plot_dim_width = 750
max_items = np.max(df["vis_pred_bin"].value_counts().tolist())
mark_size = np.round(plot_dim_height / max_items) * 8
if mark_size > 75:
mark_size = 75
plot_dim_height = 13 * max_items
# Main chart
chart = alt.Chart(df).mark_square(opacity=0.8, size=mark_size, stroke="grey", strokeWidth=0.5).transform_window(
groupby=['vis_pred_bin'],
sort=[{'field': 'rating'}],
id='row_number()',
ignorePeers=True,
).encode(
x=alt.X('vis_pred_bin:Q', title="Our prediction of your rating", scale=alt.Scale(domain=(domain_min, domain_max))),
y=alt.Y('id:O', title="Comments (ordered by System toxicity rating)", axis=alt.Axis(values=list(range(0, max_items, 5))), sort='descending'),
color = alt.Color("key:O", scale=alt.Scale(
domain=["System agrees: Non-toxic", "System agrees: Toxic", "System differs: Error > 1.5", "System differs: Error > 1.0", "System differs: Error > 0.5", "System differs: Error <=0.5"],
range=["white", "#cbcbcb", "red", "#ff7a5c", "#ffa894", "#ffd1c7"]),
title="System rating (box color)"
),
href="url:N",
tooltip = [
alt.Tooltip("topic_:N", title="Topic"),
alt.Tooltip("system_label:N", title="System label"),
alt.Tooltip("rating:Q", title="System rating", format=".2f"),
alt.Tooltip("pred:Q", title="Your rating", format=".2f")
]
)
# Filter to specified error type
if error_type == "System is under-sensitive":
# FN: system rates non-toxic, but user rates toxic
chart = chart.transform_filter(
alt.FieldGTPredicate(field="pred", gt=threshold)
)
elif error_type == "System is over-sensitive":
# FP: system rates toxic, but user rates non-toxic
chart = chart.transform_filter(
alt.FieldLTEPredicate(field="pred", lte=threshold)
)
# Threshold line
rule = alt.Chart(pd.DataFrame({
"threshold": [threshold],
"System threshold": [f"Threshold = {threshold}"]
})).mark_rule().encode(
x=alt.X("mean(threshold):Q", scale=alt.Scale(domain=(domain_min, domain_max)), title=""),
color=alt.Color("System threshold:N", scale=alt.Scale(domain=[f"Threshold = {threshold}"], range=["grey"])),
size=alt.value(2),
)
# Plot region annotations
nontoxic_x = (domain_min + threshold) / 2.
toxic_x = (domain_max + threshold) / 2.
annotation = alt.Chart(pd.DataFrame({
"annotation_text": ["Non-toxic", "Toxic"],
"x": [nontoxic_x, toxic_x],
"y": [max_items, max_items],
})).mark_text(
align="center",
baseline="middle",
fontSize=16,
dy=10,
color="grey"
).encode(
x=alt.X("x", title=""),
y=alt.Y("y", title="", axis=None),
text="annotation_text"
)
# Plot region background colors
bkgd = alt.Chart(pd.DataFrame({
"start": [domain_min, threshold],
"stop": [threshold, domain_max],
"bkgd": ["Non-toxic (L side)", "Toxic (R side)"],
})).mark_rect(opacity=1.0, stroke="grey", strokeWidth=0.25).encode(
x=alt.X("start:Q", scale=alt.Scale(domain=[domain_min, domain_max])),
x2=alt.X2("stop:Q"),
y=alt.value(0),
y2=alt.value(plot_dim_height),
color=alt.Color("bkgd:O", scale=alt.Scale(
domain=["Non-toxic (L side)", "Toxic (R side)"],
range=["white", "#cbcbcb"]),
title="Your rating (background color)"
)
)
plot = (bkgd + annotation + chart + rule).properties(height=(plot_dim_height), width=plot_dim_width).resolve_scale(color='independent').to_json()
# Save to file
chart_dir = "./data/charts"
chart_file = os.path.join(chart_dir, f"{cur_user}_{cur_model}.pkl")
with open(chart_file, "w") as f:
json.dump(plot, f)
return plot
def get_cluster_overview_plot(preds_df, error_type, threshold=TOXIC_THRESHOLD, use_model=True):
preds_df_mod = preds_df.merge(comments_grouped_full_topic_cat, on="item_id", how="left", suffixes=('_', '_avg'))
if use_model:
return plot_overall_vis_cluster(preds_df_mod, error_type=error_type, n_comments=500, threshold=threshold)
else:
return plot_overall_vis_cluster2(preds_df_mod, error_type=error_type, n_comments=500, threshold=threshold)
def plot_overall_vis_cluster2(preds_df, error_type, n_comments=None, bins=VIS_BINS, threshold=TOXIC_THRESHOLD, bin_step=0.05):
df = preds_df.copy().reset_index()
df["vis_pred_bin"], out_bins = pd.cut(df["rating"], bins, labels=VIS_BINS_LABELS, retbins=True)
df = df[df["user_id"] == "A"].sort_values(by=["rating"]).reset_index()
df["system_label"] = [("toxic" if r > threshold else "non-toxic") for r in df["rating"].tolist()]
df["key"] = [get_key_no_model(sys, threshold) for sys in df["rating"].tolist()]
print("len(df)", len(df)) # always 0 for some reason (from keyword search)
df["category"] = df.apply(lambda row: get_category(row), axis=1)
df["url"] = df.apply(lambda row: get_comment_url(row), axis=1)
if n_comments is not None:
n_to_sample = np.min([n_comments, len(df)])
df = df.sample(n=n_to_sample)
# Plot sizing
domain_min = 0
domain_max = 4
plot_dim_height = 500
plot_dim_width = 750
max_items = np.max(df["vis_pred_bin"].value_counts().tolist())
mark_size = np.round(plot_dim_height / max_items) * 8
if mark_size > 75:
mark_size = 75
plot_dim_height = 13 * max_items
# Main chart
chart = alt.Chart(df).mark_square(opacity=0.8, size=mark_size, stroke="grey", strokeWidth=0.25).transform_window(
groupby=['vis_pred_bin'],
sort=[{'field': 'rating'}],
id='row_number()',
ignorePeers=True
).encode(
x=alt.X('vis_pred_bin:Q', title="System toxicity rating", scale=alt.Scale(domain=(domain_min, domain_max))),
y=alt.Y('id:O', title="Comments (ordered by System toxicity rating)", axis=alt.Axis(values=list(range(0, max_items, 5))), sort='descending'),
color = alt.Color("key:O", scale=alt.Scale(
domain=["System says: Non-toxic", "System says: Toxic"],
range=["white", "#cbcbcb"]),
title="System rating",
legend=None,
),
href="url:N",
tooltip = [
alt.Tooltip("comment_:N", title="comment"),
alt.Tooltip("rating:Q", title="System rating", format=".2f"),
]
)
# Threshold line
rule = alt.Chart(pd.DataFrame({
"threshold": [threshold],
})).mark_rule(color='grey').encode(
x=alt.X("mean(threshold):Q", scale=alt.Scale(domain=[domain_min, domain_max]), title=""),
size=alt.value(2),
)
# Plot region annotations
nontoxic_x = (domain_min + threshold) / 2.
toxic_x = (domain_max + threshold) / 2.
annotation = alt.Chart(pd.DataFrame({
"annotation_text": ["Non-toxic", "Toxic"],
"x": [nontoxic_x, toxic_x],
"y": [max_items, max_items],
})).mark_text(
align="center",
baseline="middle",
fontSize=16,
dy=10,
color="grey"
).encode(
x=alt.X("x", title=""),
y=alt.Y("y", title="", axis=None),
text="annotation_text"
)
# Plot region background colors
bkgd = alt.Chart(pd.DataFrame({
"start": [domain_min, threshold],
"stop": [threshold, domain_max],
"bkgd": ["Non-toxic", "Toxic"],
})).mark_rect(opacity=1.0, stroke="grey", strokeWidth=0.25).encode(
x=alt.X("start:Q", scale=alt.Scale(domain=[domain_min, domain_max])),
x2=alt.X2("stop:Q"),
y=alt.value(0),
y2=alt.value(plot_dim_height),
color=alt.Color("bkgd:O", scale=alt.Scale(
domain=["Non-toxic", "Toxic"],
range=["white", "#cbcbcb"]),
title="System rating"
)
)
final_plot = (bkgd + annotation + chart + rule).properties(height=(plot_dim_height), width=plot_dim_width).resolve_scale(color='independent').to_json()
return final_plot, df
def plot_overall_vis_cluster(preds_df, error_type, n_comments=None, bins=VIS_BINS, threshold=TOXIC_THRESHOLD, bin_step=0.05):
df = preds_df.copy().reset_index(drop=True)
# df = df[df["topic_"] == topic]
df["vis_pred_bin"], out_bins = pd.cut(df["pred"], bins, labels=VIS_BINS_LABELS, retbins=True)
df = df[df["user_id"] == "A"].sort_values(by=["rating"]).reset_index(drop=True)
df["system_label"] = [("toxic" if r > threshold else "non-toxic") for r in df["rating"].tolist()]
df["key"] = [get_key(sys, user, threshold) for sys, user in zip(df["rating"].tolist(), df["pred"].tolist())]
print("len(df)", len(df)) # always 0 for some reason (from keyword search)
# print("columns", df.columns)
df["category"] = df.apply(lambda row: get_category(row), axis=1)
df["url"] = df.apply(lambda row: get_comment_url(row), axis=1)
if n_comments is not None:
n_to_sample = np.min([n_comments, len(df)])
df = df.sample(n=n_to_sample)
# Plot sizing
domain_min = 0
domain_max = 4
plot_dim_height = 500
plot_dim_width = 750
max_items = np.max(df["vis_pred_bin"].value_counts().tolist())
mark_size = np.round(plot_dim_height / max_items) * 8
if mark_size > 75:
mark_size = 75
plot_dim_height = 13 * max_items
# Main chart
chart = alt.Chart(df).mark_square(opacity=0.8, size=mark_size, stroke="grey", strokeWidth=0.25).transform_window(
groupby=['vis_pred_bin'],
sort=[{'field': 'rating'}],
id='row_number()',
ignorePeers=True
).encode(
x=alt.X('vis_pred_bin:Q', title="Our prediction of your rating", scale=alt.Scale(domain=(domain_min, domain_max))),
y=alt.Y('id:O', title="Comments (ordered by System toxicity rating)", axis=alt.Axis(values=list(range(0, max_items, 5))), sort='descending'),
color = alt.Color("key:O", scale=alt.Scale(
domain=["System agrees: Non-toxic", "System agrees: Toxic", "System differs: Error > 1.5", "System differs: Error > 1.0", "System differs: Error > 0.5", "System differs: Error <=0.5"],
range=["white", "#cbcbcb", "red", "#ff7a5c", "#ffa894", "#ffd1c7"]),
title="System rating (box color)"
),
href="url:N",
tooltip = [
alt.Tooltip("comment_:N", title="comment"),
alt.Tooltip("rating:Q", title="System rating", format=".2f"),
alt.Tooltip("pred:Q", title="Your rating", format=".2f"),
alt.Tooltip("category:N", title="Potential toxicity categories")
]
)
# Filter to specified error type
if error_type == "System is under-sensitive":
# FN: system rates non-toxic, but user rates toxic
chart = chart.transform_filter(
alt.FieldGTPredicate(field="pred", gt=threshold)
)
elif error_type == "System is over-sensitive":
# FP: system rates toxic, but user rates non-toxic
chart = chart.transform_filter(
alt.FieldLTEPredicate(field="pred", lte=threshold)
)
# Threshold line
rule = alt.Chart(pd.DataFrame({
"threshold": [threshold],
})).mark_rule(color='grey').encode(
x=alt.X("mean(threshold):Q", scale=alt.Scale(domain=[domain_min, domain_max]), title=""),
size=alt.value(2),
)
# Plot region annotations
nontoxic_x = (domain_min + threshold) / 2.
toxic_x = (domain_max + threshold) / 2.
annotation = alt.Chart(pd.DataFrame({
"annotation_text": ["Non-toxic", "Toxic"],
"x": [nontoxic_x, toxic_x],
"y": [max_items, max_items],
})).mark_text(
align="center",
baseline="middle",
fontSize=16,
dy=10,
color="grey"
).encode(
x=alt.X("x", title=""),
y=alt.Y("y", title="", axis=None),
text="annotation_text"
)
# Plot region background colors
bkgd = alt.Chart(pd.DataFrame({
"start": [domain_min, threshold],
"stop": [threshold, domain_max],
"bkgd": ["Non-toxic (L side)", "Toxic (R side)"],
})).mark_rect(opacity=1.0, stroke="grey", strokeWidth=0.25).encode(
x=alt.X("start:Q", scale=alt.Scale(domain=[domain_min, domain_max])),
x2=alt.X2("stop:Q"),
y=alt.value(0),
y2=alt.value(plot_dim_height),
color=alt.Color("bkgd:O", scale=alt.Scale(
domain=["Non-toxic (L side)", "Toxic (R side)"],
range=["white", "#cbcbcb"]),
title="Your rating (background color)"
)
)
final_plot = (bkgd + annotation + chart + rule).properties(height=(plot_dim_height), width=plot_dim_width).resolve_scale(color='independent').to_json()
return final_plot, df
def get_cluster_comments(df, error_type, threshold=TOXIC_THRESHOLD, worker_id="A", num_examples=50, use_model=True):
df["user_color"] = [get_user_color(user, threshold) for user in df["pred"].tolist()] # get cell colors
df["system_color"] = [get_user_color(sys, threshold) for sys in df["rating"].tolist()] # get cell colors
df["error_color"] = [get_system_color(sys, user, threshold) for sys, user in zip(df["rating"].tolist(), df["pred"].tolist())] # get cell colors
df["error_type"] = [get_error_type(sys, user, threshold) for sys, user in zip(df["rating"].tolist(), df["pred"].tolist())] # get error type in words
df["error_amt"] = [abs(sys - threshold) for sys in df["rating"].tolist()] # get raw error
df["judgment"] = ["" for _ in range(len(df))] # template for "agree" or "disagree" buttons
if use_model:
df = df.sort_values(by=["error_amt"], ascending=False) # surface largest errors first
else:
print("get_cluster_comments; not using model")
df = df.sort_values(by=["rating"], ascending=True)
df["id"] = df["item_id"]
# df["comment"] already exists
df["comment"] = df["comment_"]
df["toxicity_category"] = df["category"]
df["user_rating"] = df["pred"]
df["user_decision"] = [get_decision(rating, threshold) for rating in df["pred"].tolist()]
df["system_rating"] = df["rating"]
df["system_decision"] = [get_decision(rating, threshold) for rating in df["rating"].tolist()]
df["error_type"] = df["error_type"]
df = df.head(num_examples)
df = df.round(decimals=2)
# Filter to specified error type
if error_type == "System is under-sensitive":
# FN: system rates non-toxic, but user rates toxic
df = df[df["error_type"] == "System may be under-sensitive"]
elif error_type == "System is over-sensitive":
# FP: system rates toxic, but user rates non-toxic
df = df[df["error_type"] == "System may be over-sensitive" ]
elif error_type == "Both":
df = df[(df["error_type"] == "System may be under-sensitive") | (df["error_type"] == "System may be over-sensitive")]
return df.to_json(orient="records")
# PERSONALIZED CLUSTERS utils
def get_disagreement_comments(preds_df, mode, n=10_000, threshold=TOXIC_THRESHOLD):
# Get difference between user rating and system rating
df = preds_df.copy()
df["diff"] = [get_error_size(sys, user, threshold) for sys, user in zip(df["rating"].tolist(), df["pred"].tolist())]
df["error_type"] = [get_error_type(sys, user, threshold) for sys, user in zip(df["rating"].tolist(), df["pred"].tolist())]
# asc = low to high; lowest = sys lower than user (under-sensitive)
# desc = high to low; lowest = sys higher than user (over-sensitive)
if mode == "under-sensitive":
df = df[df["error_type"] == "System may be under-sensitive"]
asc = True
elif mode == "over-sensitive":
df = df[df["error_type"] == "System may be over-sensitive"]
asc = False
df = df.sort_values(by=["diff"], ascending=asc)
df = df.head(n)
return df["comment_"].tolist(), df
def get_personal_clusters(model, n=3):
personal_cluster_file = f"./data/personal_cluster_dfs/{model}.pkl"
if (os.path.isfile(personal_cluster_file)):
with open(personal_cluster_file, "rb") as f:
cluster_df = pickle.load(f)
cluster_df = cluster_df.sort_values(by=["topic_id"])
topics_under = cluster_df[cluster_df["error_type"] == "System may be under-sensitive"]["topic"].unique().tolist()
topics_under = topics_under[1:(n + 1)]
topics_over = cluster_df[cluster_df["error_type"] == "System may be over-sensitive"]["topic"].unique().tolist()
topics_over = topics_over[1:(n + 1)]
return topics_under, topics_over
else:
topics_under_top = []
topics_over_top = []
preds_df_file = f"./data/preds_dfs/{model}.pkl"
if (os.path.isfile(preds_df_file)):
with open(preds_df_file, "rb") as f:
preds_df = pickle.load(f)
preds_df_mod = preds_df.merge(comments_grouped_full_topic_cat, on="item_id", how="left", suffixes=('_', '_avg')).reset_index()
preds_df_mod = preds_df_mod[preds_df_mod["user_id"] == "A"]
comments_under, comments_under_df = get_disagreement_comments(preds_df_mod, mode="under-sensitive", n=1000)
if len(comments_under) > 0:
topics_under = BERTopic(embedding_model="paraphrase-MiniLM-L6-v2").fit(comments_under)
topics_under_top = topics_under.get_topic_info().head(n)["Name"].tolist()
print("topics_under", topics_under_top)
# Get topics per comment
topics_assigned, _ = topics_under.transform(comments_under)
comments_under_df["topic_id"] = topics_assigned
cur_topic_ids = topics_under.get_topic_info().Topic
topic_short_names = topics_under.get_topic_info().Name
topic_ids_to_names = {cur_topic_ids[i]: topic_short_names[i] for i in range(len(cur_topic_ids))}
comments_under_df["topic"] = [topic_ids_to_names[topic_id] for topic_id in comments_under_df["topic_id"].tolist()]
comments_over, comments_over_df = get_disagreement_comments(preds_df_mod, mode="over-sensitive", n=1000)
if len(comments_over) > 0:
topics_over = BERTopic(embedding_model="paraphrase-MiniLM-L6-v2").fit(comments_over)
topics_over_top = topics_over.get_topic_info().head(n)["Name"].tolist()
print("topics_over", topics_over_top)
# Get topics per comment
topics_assigned, _ = topics_over.transform(comments_over)
comments_over_df["topic_id"] = topics_assigned
cur_topic_ids = topics_over.get_topic_info().Topic
topic_short_names = topics_over.get_topic_info().Name
topic_ids_to_names = {cur_topic_ids[i]: topic_short_names[i] for i in range(len(cur_topic_ids))}
comments_over_df["topic"] = [topic_ids_to_names[topic_id] for topic_id in comments_over_df["topic_id"].tolist()]
cluster_df = pd.concat([comments_under_df, comments_over_df])
with open(f"./data/personal_cluster_dfs/{model}.pkl", "wb") as f:
pickle.dump(cluster_df, f)
return topics_under_top, topics_over_top
return [], []
|