Spaces:
Runtime error
Runtime error
File size: 30,043 Bytes
32f0b26 70ab0be 32f0b26 70ab0be 32f0b26 70ab0be 32f0b26 70ab0be 32f0b26 70ab0be 32f0b26 da6aa93 32f0b26 70ab0be 32f0b26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 |
from flask import Flask, send_from_directory
from flask import request
import random
import json
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import pickle
import os
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import confusion_matrix
import math
import altair as alt
import matplotlib.pyplot as plt
import time
import friendlywords as fw
import audit_utils as utils
app = Flask(__name__)
DEBUG = False # Debug flag for development; set to False for production
# Path for our main Svelte page
@app.route("/")
def base():
return send_from_directory('indie_label_svelte/public', 'index.html')
# Path for all the static files (compiled JS/CSS, etc.)
@app.route("/<path:path>")
def home(path):
return send_from_directory('indie_label_svelte/public', path)
########################################
# ROUTE: /AUDIT_SETTINGS
comments_grouped_full_topic_cat = pd.read_pickle("data/comments_grouped_full_topic_cat2_persp.pkl")
@app.route("/audit_settings")
def audit_settings(debug=DEBUG):
# Fetch page content
user = request.args.get("user")
scaffold_method = request.args.get("scaffold_method")
# Assign user ID if none is provided (default case)
if user == "null":
if debug:
user = "DemoUser"
else:
# Generate random two-word user ID
user = fw.generate(2, separator="_")
user_models = utils.get_all_model_names(user)
grp_models = [m for m in user_models if m.startswith(f"model_{user}_group_")]
clusters = utils.get_unique_topics()
if len(user_models) > 2 and scaffold_method != "tutorial" and user != "DemoUser":
# Highlight topics that have been tuned
tuned_clusters = [m.lstrip(f"model_{user}_") for m in user_models if (m != f"model_{user}" and not m.startswith(f"model_{user}_group_"))]
other_clusters = [c for c in clusters if c not in tuned_clusters]
tuned_options = {
"label": "Topics with tuned models",
"options": [{"value": i, "text": cluster} for i, cluster in enumerate(tuned_clusters)],
}
other_options = {
"label": "All other topics",
"options": [{"value": i, "text": cluster} for i, cluster in enumerate(other_clusters)],
}
clusters_options = [tuned_options, other_options]
else:
clusters_options = [{
"label": "All auto-generated topics",
"options": [{"value": i, "text": cluster} for i, cluster in enumerate(clusters)],
},]
if scaffold_method == "personal_cluster":
cluster_model = user_models[0]
personal_cluster_file = f"./data/personal_cluster_dfs/{cluster_model}.pkl"
if os.path.isfile(personal_cluster_file) and cluster_model != "":
print("audit_settings", personal_cluster_file, cluster_model)
topics_under_top, topics_over_top = utils.get_personal_clusters(cluster_model)
pers_cluster = topics_under_top + topics_over_top
pers_cluster_options = {
"label": "Personalized clusters",
"options": [{"value": i, "text": cluster} for i, cluster in enumerate(pers_cluster)],
}
clusters_options.insert(0, pers_cluster_options)
clusters_for_tuning = utils.get_large_clusters(min_n=150)
clusters_for_tuning_options = [{"value": i, "text": cluster} for i, cluster in enumerate(clusters_for_tuning)] # Format for Svelecte UI element
context = {
"personalized_models": user_models,
"personalized_model_grp": grp_models,
"perf_metrics": ["Average rating difference", "Mean Absolute Error (MAE)", "Root Mean Squared Error (RMSE)", "Mean Squared Error (MSE)"],
"breakdown_categories": ['Topic', 'Toxicity Category', 'Toxicity Severity'],
"clusters": clusters_options,
"clusters_for_tuning": clusters_for_tuning_options,
"user": user,
}
return json.dumps(context)
########################################
# ROUTE: /GET_AUDIT
@app.route("/get_audit")
def get_audit():
pers_model = request.args.get("pers_model")
perf_metric = request.args.get("perf_metric")
breakdown_axis = request.args.get("breakdown_axis")
breakdown_sort = request.args.get("breakdown_sort")
n_topics = int(request.args.get("n_topics"))
error_type = request.args.get("error_type")
cur_user = request.args.get("cur_user")
topic_vis_method = request.args.get("topic_vis_method")
if topic_vis_method == "null":
topic_vis_method = "median"
if breakdown_sort == "difference":
sort_class_plot = True
elif breakdown_sort == "default":
sort_class_plot = False
else:
raise Exception("Invalid breakdown_sort value")
overall_perf = utils.show_overall_perf(
variant=pers_model,
error_type=error_type,
cur_user=cur_user,
breakdown_axis=breakdown_axis,
topic_vis_method=topic_vis_method,
)
results = {
"overall_perf": overall_perf,
}
return json.dumps(results)
########################################
# ROUTE: /GET_CLUSTER_RESULTS
@app.route("/get_cluster_results")
def get_cluster_results():
pers_model = request.args.get("pers_model")
n_examples = int(request.args.get("n_examples"))
cluster = request.args.get("cluster")
example_sort = request.args.get("example_sort")
comparison_group = request.args.get("comparison_group")
topic_df_ids = request.args.getlist("topic_df_ids")
topic_df_ids = [int(val) for val in topic_df_ids[0].split(",") if val != ""]
search_type = request.args.get("search_type")
keyword = request.args.get("keyword")
n_neighbors = request.args.get("n_neighbors")
if n_neighbors != "null":
n_neighbors = int(n_neighbors)
neighbor_threshold = 0.6
error_type = request.args.get("error_type")
use_model = request.args.get("use_model") == "true"
scaffold_method = request.args.get("scaffold_method")
# If user has a tuned model for this cluster, use that
cluster_model_file = f"./data/trained_models/{pers_model}_{cluster}.pkl"
if os.path.isfile(cluster_model_file):
pers_model = f"{pers_model}_{cluster}"
print(f"get_cluster_results using model {pers_model}")
other_ids = []
perf_metric = "avg_diff"
sort_ascending = True if example_sort == "ascending" else False
topic_df = None
personal_cluster_file = f"./data/personal_cluster_dfs/{pers_model}.pkl"
if (scaffold_method == "personal_cluster") and (os.path.isfile(personal_cluster_file)):
# Handle personal clusters
with open(personal_cluster_file, "rb") as f:
topic_df = pickle.load(f)
topic_df = topic_df[(topic_df["topic"] == cluster)]
else:
# Regular handling
with open(f"data/preds_dfs/{pers_model}.pkl", "rb") as f:
topic_df = pickle.load(f)
if search_type == "cluster":
# Display examples with comment, your pred, and other users' pred
topic_df = topic_df[(topic_df["topic"] == cluster) | (topic_df["item_id"].isin(topic_df_ids))]
elif search_type == "neighbors":
neighbor_ids = utils.get_match(topic_df_ids, K=n_neighbors, threshold=neighbor_threshold, debug=False)
topic_df = topic_df[(topic_df["item_id"].isin(neighbor_ids)) | (topic_df["item_id"].isin(topic_df_ids))]
elif search_type == "keyword":
topic_df = topic_df[(topic_df["comment"].str.contains(keyword, case=False, regex=False)) | (topic_df["item_id"].isin(topic_df_ids))]
topic_df = topic_df.drop_duplicates()
print("len topic_df", len(topic_df))
# Handle empty results
if len(topic_df) == 0:
results = {
"user_perf_rounded": None,
"user_direction": None,
"other_perf_rounded": None,
"other_direction": None,
"n_other_users": None,
"cluster_examples": None,
"odds_ratio": None,
"odds_ratio_explanation": None,
"topic_df_ids": [],
"cluster_overview_plot_json": None,
"cluster_comments": None,
}
return results
topic_df_ids = topic_df["item_id"].unique().tolist()
if (scaffold_method == "personal_cluster") and (os.path.isfile(personal_cluster_file)):
cluster_overview_plot_json, sampled_df = utils.plot_overall_vis_cluster(topic_df, error_type=error_type, n_comments=500)
else:
# Default case
topic_df_mod = topic_df.merge(comments_grouped_full_topic_cat, on="item_id", how="left", suffixes=('_', '_avg'))
if use_model:
# Display results with the model as a reference point
cluster_overview_plot_json, sampled_df = utils.plot_overall_vis_cluster(topic_df_mod, error_type=error_type, n_comments=500)
else:
# Display results without a model
cluster_overview_plot_json, sampled_df = utils.plot_overall_vis_cluster_no_model(topic_df_mod, n_comments=500)
cluster_comments = utils.get_cluster_comments(sampled_df,error_type=error_type, num_examples=n_examples, use_model=use_model) # New version of cluster comment table
results = {
"topic_df_ids": topic_df_ids,
"cluster_overview_plot_json": json.loads(cluster_overview_plot_json),
"cluster_comments": cluster_comments,
}
return json.dumps(results)
########################################
# ROUTE: /GET_GROUP_SIZE
@app.route("/get_group_size")
def get_group_size():
# Fetch info for initial labeling component
sel_gender = request.args.get("sel_gender")
sel_pol = request.args.get("sel_pol")
sel_relig = request.args.get("sel_relig")
sel_race = request.args.get("sel_race")
sel_lgbtq = request.args.get("sel_lgbtq")
if sel_race != "":
sel_race = sel_race.split(",")
_, group_size = utils.get_workers_in_group(sel_gender, sel_race, sel_relig, sel_pol, sel_lgbtq)
context = {
"group_size": group_size,
}
return json.dumps(context)
########################################
# ROUTE: /GET_GROUP_MODEL
@app.route("/get_group_model")
def get_group_model():
# Fetch info for initial labeling component
model_name = request.args.get("model_name")
user = request.args.get("user")
sel_gender = request.args.get("sel_gender")
sel_pol = request.args.get("sel_pol")
sel_relig = request.args.get("sel_relig")
sel_lgbtq = request.args.get("sel_lgbtq")
sel_race_orig = request.args.get("sel_race")
if sel_race_orig != "":
sel_race = sel_race_orig.split(",")
else:
sel_race = ""
start = time.time()
grp_df, group_size = utils.get_workers_in_group(sel_gender, sel_race, sel_relig, sel_pol, sel_lgbtq)
grp_ids = grp_df["worker_id"].tolist()
ratings_grp = utils.get_grp_model_labels(
comments_df=comments_grouped_full_topic_cat,
n_label_per_bin=BIN_DISTRIB,
score_bins=SCORE_BINS,
grp_ids=grp_ids,
)
# print("ratings_grp", ratings_grp)
# Modify model name
model_name = f"{model_name}_group_gender{sel_gender}_relig{sel_relig}_pol{sel_pol}_race{sel_race_orig}_lgbtq_{sel_lgbtq}"
label_dir = f"./data/labels/{model_name}"
# Create directory for labels if it doesn't yet exist
if not os.path.isdir(label_dir):
os.mkdir(label_dir)
last_label_i = len([name for name in os.listdir(label_dir) if (os.path.isfile(os.path.join(label_dir, name)) and name.endswith('.pkl'))])
# Train group model
mae, mse, rmse, avg_diff, ratings_prev = utils.train_updated_model(model_name, last_label_i, ratings_grp, user)
duration = time.time() - start
print("Time to train/cache:", duration)
context = {
"group_size": group_size,
"mae": mae,
}
return json.dumps(context)
########################################
# ROUTE: /GET_LABELING
@app.route("/get_labeling")
def get_labeling():
# Fetch info for initial labeling component
user = request.args.get("user")
clusters_for_tuning = utils.get_large_clusters(min_n=150)
clusters_for_tuning_options = [{"value": i, "text": cluster} for i, cluster in enumerate(clusters_for_tuning)] # Format for Svelecte UI element
model_name_suggestion = f"my_model"
context = {
"personalized_models": utils.get_all_model_names(user),
"model_name_suggestion": model_name_suggestion,
"clusters_for_tuning": clusters_for_tuning_options,
}
return json.dumps(context)
########################################
# ROUTE: /GET_COMMENTS_TO_LABEL
N_LABEL_PER_BIN = 8 # 8 * 5 = 40 comments
BIN_DISTRIB = [4, 8, 16, 8, 4]
SCORE_BINS = [(0.0, 0.5), (0.5, 1.5), (1.5, 2.5), (2.5, 3.5), (3.5, 4.01)]
@app.route("/get_comments_to_label")
def get_comments_to_label():
n = int(request.args.get("n"))
# Fetch examples to label
to_label_ids = utils.create_example_sets(
comments_df=comments_grouped_full_topic_cat,
n_label_per_bin=BIN_DISTRIB,
score_bins=SCORE_BINS,
keyword=None
)
random.shuffle(to_label_ids) # randomize to not prime users
to_label_ids = to_label_ids[:n]
ids_to_comments = utils.get_ids_to_comments()
to_label = [ids_to_comments[comment_id] for comment_id in to_label_ids]
context = {
"to_label": to_label,
}
return json.dumps(context)
########################################
# ROUTE: /GET_COMMENTS_TO_LABEL_TOPIC
N_LABEL_PER_BIN_TOPIC = 2 # 2 * 5 = 10 comments
@app.route("/get_comments_to_label_topic")
def get_comments_to_label_topic():
# Fetch examples to label
topic = request.args.get("topic")
to_label_ids = utils.create_example_sets(
comments_df=comments_grouped_full_topic_cat,
# n_label_per_bin=N_LABEL_PER_BIN_TOPIC,
n_label_per_bin=BIN_DISTRIB,
score_bins=SCORE_BINS,
keyword=None,
topic=topic,
)
random.shuffle(to_label_ids) # randomize to not prime users
ids_to_comments = utils.get_ids_to_comments()
to_label = [ids_to_comments[comment_id] for comment_id in to_label_ids]
context = {
"to_label": to_label,
}
return json.dumps(context)
########################################
# ROUTE: /GET_PERSONALIZED_MODEL
@app.route("/get_personalized_model")
def get_personalized_model():
model_name = request.args.get("model_name")
ratings_json = request.args.get("ratings")
mode = request.args.get("mode")
user = request.args.get("user")
ratings = json.loads(ratings_json)
print(ratings)
start = time.time()
label_dir = f"./data/labels/{model_name}"
# Create directory for labels if it doesn't yet exist
if not os.path.isdir(label_dir):
os.mkdir(label_dir)
last_label_i = len([name for name in os.listdir(label_dir) if (os.path.isfile(os.path.join(label_dir, name)) and name.endswith('.pkl'))])
# Handle existing or new model cases
if mode == "view":
# Fetch prior model performance
if model_name not in utils.get_all_model_names():
raise Exception(f"Model {model_name} does not exist")
else:
mae, mse, rmse, avg_diff, ratings_prev = utils.fetch_existing_data(model_name, last_label_i)
elif mode == "train":
# Train model and cache predictions using new labels
print("get_personalized_model train")
mae, mse, rmse, avg_diff, ratings_prev = utils.train_updated_model(model_name, last_label_i, ratings, user)
duration = time.time() - start
print("Time to train/cache:", duration)
perf_plot, mae_status = utils.plot_train_perf_results(model_name, mae)
perf_plot_json = perf_plot.to_json()
def round_metric(x):
return np.round(abs(x), 3)
results = {
"model_name": model_name,
"mae": round_metric(mae),
"mae_status": mae_status,
"mse": round_metric(mse),
"rmse": round_metric(rmse),
"avg_diff": round_metric(avg_diff),
"duration": duration,
"ratings_prev": ratings_prev,
"perf_plot_json": json.loads(perf_plot_json),
}
return json.dumps(results)
########################################
# ROUTE: /GET_PERSONALIZED_MODEL_TOPIC
@app.route("/get_personalized_model_topic")
def get_personalized_model_topic():
model_name = request.args.get("model_name")
ratings_json = request.args.get("ratings")
user = request.args.get("user")
ratings = json.loads(ratings_json)
topic = request.args.get("topic")
print(ratings)
start = time.time()
# Modify model name
model_name = f"{model_name}_{topic}"
label_dir = f"./data/labels/{model_name}"
# Create directory for labels if it doesn't yet exist
if not os.path.isdir(label_dir):
os.mkdir(label_dir)
last_label_i = len([name for name in os.listdir(label_dir) if (os.path.isfile(os.path.join(label_dir, name)) and name.endswith('.pkl'))])
# Handle existing or new model cases
# Train model and cache predictions using new labels
print("get_personalized_model_topic train")
mae, mse, rmse, avg_diff, ratings_prev = utils.train_updated_model(model_name, last_label_i, ratings, user, topic=topic)
duration = time.time() - start
print("Time to train/cache:", duration)
def round_metric(x):
return np.round(abs(x), 3)
results = {
"success": "success",
"ratings_prev": ratings_prev,
"new_model_name": model_name,
}
return json.dumps(results)
########################################
# ROUTE: /GET_REPORTS
@app.route("/get_reports")
def get_reports():
cur_user = request.args.get("cur_user")
scaffold_method = request.args.get("scaffold_method")
model = request.args.get("model")
topic_vis_method = request.args.get("topic_vis_method")
if topic_vis_method == "null":
topic_vis_method = "fp_fn"
# Load reports for current user from stored files
report_dir = f"./data/user_reports"
user_file = os.path.join(report_dir, f"{cur_user}_{scaffold_method}.pkl")
if not os.path.isfile(user_file):
if scaffold_method == "fixed":
reports = get_fixed_scaffold()
elif (scaffold_method == "personal" or scaffold_method == "personal_group" or scaffold_method == "personal_test"):
reports = get_personal_scaffold(model, topic_vis_method)
elif (scaffold_method == "personal_cluster"):
reports = get_personal_cluster_scaffold(model)
elif scaffold_method == "prompts":
reports = get_prompts_scaffold()
elif scaffold_method == "tutorial":
reports = get_tutorial_scaffold()
else:
# Prepare empty report
reports = [
{
"title": "",
"error_type": "",
"evidence": [],
"text_entry": "",
"complete_status": False,
}
]
else:
# Load from pickle file
with open(user_file, "rb") as f:
reports = pickle.load(f)
results = {
"reports": reports,
}
return json.dumps(results)
def get_fixed_scaffold():
return [
{
"title": "Topic: 6_jews_jew_jewish_rabbi",
"error_type": "System is under-sensitive",
"evidence": [],
"text_entry": "",
"complete_status": False,
},
{
"title": "Topic: 73_troll_trolls_trolling_spammers",
"error_type": "System is over-sensitive",
"evidence": [],
"text_entry": "",
"complete_status": False,
},
{
"title": "Topic: 66_mexicans_mexico_mexican_spanish",
"error_type": "System is under-sensitive",
"evidence": [],
"text_entry": "",
"complete_status": False,
},
{
"title": "Topic: 89_cowards_coward_cowardly_brave",
"error_type": "System is over-sensitive",
"evidence": [],
"text_entry": "",
"complete_status": False,
},
{
"title": "Topic: 63_disgusting_gross_toxic_thicc",
"error_type": "System is under-sensitive",
"evidence": [],
"text_entry": "",
"complete_status": False,
},
]
def get_empty_report(title, error_type):
return {
"title": f"Topic: {title}",
"error_type": error_type,
"evidence": [],
"text_entry": "",
"complete_status": False,
}
def get_tutorial_scaffold():
return [
{
"title": "Topic: 79_idiot_dumb_stupid_dumber",
"error_type": "System is over-sensitive",
"evidence": [],
"text_entry": "",
"complete_status": False,
},
]
def get_personal_cluster_scaffold(model):
topics_under_top, topics_over_top = utils.get_personal_clusters(model)
report_under = [get_empty_report(topic, "System is under-sensitive") for topic in topics_under_top]
report_over = [get_empty_report(topic, "System is over-sensitive") for topic in topics_over_top]
reports = (report_under + report_over)
random.shuffle(reports)
return reports
def get_topic_errors(df, topic_vis_method, threshold=2):
topics = df["topic_"].unique().tolist()
topic_errors = {}
for topic in topics:
t_df = df[df["topic_"] == topic]
y_true = t_df["pred"].to_numpy()
y_pred = t_df["rating"].to_numpy()
if topic_vis_method == "mae":
t_err = mean_absolute_error(y_true, y_pred)
elif topic_vis_method == "mse":
t_err = mean_squared_error(y_true, y_pred)
elif topic_vis_method == "avg_diff":
t_err = np.mean(y_true - y_pred)
elif topic_vis_method == "fp_proportion":
y_true = [0 if rating < threshold else 1 for rating in t_df["pred"].tolist()]
y_pred = [0 if rating < threshold else 1 for rating in t_df["rating"].tolist()]
try:
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
except:
tn, fp, fn, tp = [0, 0, 0, 0] # ignore; set error to 0
total = float(len(y_true))
t_err = fp / total
elif topic_vis_method == "fn_proportion":
y_true = [0 if rating < threshold else 1 for rating in t_df["pred"].tolist()]
y_pred = [0 if rating < threshold else 1 for rating in t_df["rating"].tolist()]
try:
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
except:
tn, fp, fn, tp = [0, 0, 0, 0] # ignore; set error to 0
total = float(len(y_true))
t_err = fn / total
topic_errors[topic] = t_err
return topic_errors
def get_personal_scaffold(model, topic_vis_method, n_topics=200, n=5):
threshold = utils.get_toxic_threshold()
# Get topics with greatest amount of error
with open(f"./data/preds_dfs/{model}.pkl", "rb") as f:
preds_df = pickle.load(f)
preds_df_mod = preds_df.merge(utils.get_comments_grouped_full_topic_cat(), on="item_id", how="left", suffixes=('_', '_avg'))
preds_df_mod = preds_df_mod[preds_df_mod["user_id"] == "A"].sort_values(by=["item_id"]).reset_index()
preds_df_mod = preds_df_mod[preds_df_mod["topic_id_"] < n_topics]
if topic_vis_method == "median":
df = preds_df_mod.groupby(["topic_", "user_id"]).median().reset_index()
elif topic_vis_method == "mean":
df = preds_df_mod.groupby(["topic_", "user_id"]).mean().reset_index()
elif topic_vis_method == "fp_fn":
for error_type in ["fn_proportion", "fp_proportion"]:
topic_errors = get_topic_errors(preds_df_mod, error_type)
preds_df_mod[error_type] = [topic_errors[topic] for topic in preds_df_mod["topic_"].tolist()]
df = preds_df_mod.groupby(["topic_", "user_id"]).mean().reset_index()
else:
# Get error for each topic
topic_errors = get_topic_errors(preds_df_mod, topic_vis_method)
preds_df_mod[topic_vis_method] = [topic_errors[topic] for topic in preds_df_mod["topic_"].tolist()]
df = preds_df_mod.groupby(["topic_", "user_id"]).mean().reset_index()
# Get system error
df = df[(df["topic_"] != "53_maiareficco_kallystas_dyisisitmanila_tractorsazi") & (df["topic_"] != "79_idiot_dumb_stupid_dumber")]
if topic_vis_method == "median" or topic_vis_method == "mean":
df["error_magnitude"] = [utils.get_error_magnitude(sys, user, threshold) for sys, user in zip(df["rating"].tolist(), df["pred"].tolist())]
df["error_type"] = [utils.get_error_type_radio(sys, user, threshold) for sys, user in zip(df["rating"].tolist(), df["pred"].tolist())]
df_under = df[df["error_type"] == "System is under-sensitive"]
df_under = df_under.sort_values(by=["error_magnitude"], ascending=False).head(n) # surface largest errors first
report_under = [get_empty_report(row["topic_"], row["error_type"]) for _, row in df_under.iterrows()]
df_over = df[df["error_type"] == "System is over-sensitive"]
df_over = df_over.sort_values(by=["error_magnitude"], ascending=False).head(n) # surface largest errors first
report_over = [get_empty_report(row["topic_"], row["error_type"]) for _, row in df_over.iterrows()]
# Set up reports
# return [get_empty_report(row["topic_"], row["error_type"]) for index, row in df.iterrows()]
reports = (report_under + report_over)
random.shuffle(reports)
elif topic_vis_method == "fp_fn":
df_under = df.sort_values(by=["fn_proportion"], ascending=False).head(n)
df_under = df_under[df_under["fn_proportion"] > 0]
report_under = [get_empty_report(row["topic_"], "System is under-sensitive") for _, row in df_under.iterrows()]
df_over = df.sort_values(by=["fp_proportion"], ascending=False).head(n)
df_over = df_over[df_over["fp_proportion"] > 0]
report_over = [get_empty_report(row["topic_"], "System is over-sensitive") for _, row in df_over.iterrows()]
reports = (report_under + report_over)
random.shuffle(reports)
else:
df = df.sort_values(by=[topic_vis_method], ascending=False).head(n * 2)
df["error_type"] = [utils.get_error_type_radio(sys, user, threshold) for sys, user in zip(df["rating"].tolist(), df["pred"].tolist())]
reports = [get_empty_report(row["topic_"], row["error_type"]) for _, row in df.iterrows()]
return reports
def get_prompts_scaffold():
return [
{
"title": "Are there terms that are used in your identity group or community that tend to be flagged incorrectly as toxic?",
"error_type": "System is over-sensitive",
"evidence": [],
"text_entry": "",
"complete_status": False,
},
{
"title": "Are there terms that are used in your identity group or community that tend to be flagged incorrectly as non-toxic?",
"error_type": "System is under-sensitive",
"evidence": [],
"text_entry": "",
"complete_status": False,
},
{
"title": "Are there certain ways that your community tends to be targeted by outsiders?",
"error_type": "",
"evidence": [],
"text_entry": "",
"complete_status": False,
},
{
"title": "Are there other communities whose content should be very similar to your community's? Verify that this content is treated similarly by the system.",
"error_type": "",
"evidence": [],
"text_entry": "",
"complete_status": False,
},
{
"title": "Are there ways that you've seen individuals in your community actively try to thwart the rules of automated content moderation systems? Check whether these strategies work here.",
"error_type": "",
"evidence": [],
"text_entry": "",
"complete_status": False,
},
]
########################################
# ROUTE: /SAVE_REPORTS
@app.route("/save_reports")
def save_reports():
cur_user = request.args.get("cur_user")
reports_json = request.args.get("reports")
reports = json.loads(reports_json)
scaffold_method = request.args.get("scaffold_method")
# Save reports for current user to stored files
report_dir = f"./data/user_reports"
# Save to pickle file
with open(os.path.join(report_dir, f"{cur_user}_{scaffold_method}.pkl"), "wb") as f:
pickle.dump(reports, f)
results = {
"status": "success",
}
return json.dumps(results)
########################################
# ROUTE: /GET_EXPLORE_EXAMPLES
@app.route("/get_explore_examples")
def get_explore_examples():
threshold = utils.get_toxic_threshold()
n_examples = int(request.args.get("n_examples"))
# Get sample of examples
df = utils.get_comments_grouped_full_topic_cat().sample(n=n_examples)
df["system_decision"] = [utils.get_decision(rating, threshold) for rating in df["rating"].tolist()]
df["system_color"] = [utils.get_user_color(sys, threshold) for sys in df["rating"].tolist()] # get cell colors
ex_json = df.to_json(orient="records")
results = {
"examples": ex_json,
}
return json.dumps(results)
if __name__ == "__main__":
app.run(debug=True, port=5001)
|