AIHumanBody / app.py
awacke1's picture
Update app.py
a08b1c9
raw
history blame
36.3 kB
import huggingface_hub
from huggingface_hub import InferenceClient
import streamlit as st
import streamlit.components.v1 as components
import openai
import os
import base64
import glob
import io
import json
import mistune
import pytz
import math
import requests
import sys
import time
import re
import textract
import zipfile
import random
from datetime import datetime
from openai import ChatCompletion
from xml.etree import ElementTree as ET
from bs4 import BeautifulSoup
from collections import deque
from audio_recorder_streamlit import audio_recorder
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from templates import css, bot_template, user_template
from io import BytesIO
import streamlit.components.v1 as components # Import Streamlit Components for HTML5
# page config and sidebar declares up front allow all other functions to see global class variables
st.set_page_config(page_title="AI Human Body - Homunculus Body Reasoner", layout="wide")
should_save = st.sidebar.checkbox("๐Ÿ’พ Save", value=True)
col1, col2, col3, col4 = st.columns(4)
with col1:
with st.expander("Settings ๐Ÿง ๐Ÿ’พ", expanded=True):
# File type for output, model choice
menu = ["txt", "htm", "xlsx", "csv", "md", "py"]
choice = st.sidebar.selectbox("Output File Type:", menu)
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))
# Define a context dictionary to maintain the state between exec calls
context = {}
def SpeechSynthesis(result):
documentHTML5='''
<!DOCTYPE html>
<html>
<head>
<title>Read It Aloud</title>
<script type="text/javascript">
function readAloud() {
const text = document.getElementById("textArea").value;
const speech = new SpeechSynthesisUtterance(text);
window.speechSynthesis.speak(speech);
}
</script>
</head>
<body>
<h1>๐Ÿ”Š Read It Aloud</h1>
<textarea id="textArea" rows="10" cols="80">
'''
documentHTML5 = documentHTML5 + result
documentHTML5 = documentHTML5 + '''
</textarea>
<br>
<button onclick="readAloud()">๐Ÿ”Š Read Aloud</button>
</body>
</html>
'''
components.html(documentHTML5, width=1280, height=1024)
#return result
def create_file(filename, prompt, response, should_save=True):
if not should_save:
return
# Extract base filename without extension
base_filename, ext = os.path.splitext(filename)
# Initialize the combined content
combined_content = ""
# Add Prompt with markdown title and emoji
combined_content += "# Prompt ๐Ÿ“\n" + prompt + "\n\n"
# Add Response with markdown title and emoji
combined_content += "# Response ๐Ÿ’ฌ\n" + response + "\n\n"
# Check for code blocks in the response
resources = re.findall(r"```([\s\S]*?)```", response)
for resource in resources:
# Check if the resource contains Python code
if "python" in resource.lower():
# Remove the 'python' keyword from the code block
cleaned_code = re.sub(r'^\s*python', '', resource, flags=re.IGNORECASE | re.MULTILINE)
# Add Code Results title with markdown and emoji
combined_content += "# Code Results ๐Ÿš€\n"
# Redirect standard output to capture it
original_stdout = sys.stdout
sys.stdout = io.StringIO()
# Execute the cleaned Python code within the context
try:
exec(cleaned_code, context)
code_output = sys.stdout.getvalue()
combined_content += f"```\n{code_output}\n```\n\n"
realtimeEvalResponse = "# Code Results ๐Ÿš€\n" + "```" + code_output + "```\n\n"
st.write(realtimeEvalResponse)
except Exception as e:
combined_content += f"```python\nError executing Python code: {e}\n```\n\n"
# Restore the original standard output
sys.stdout = original_stdout
else:
# Add non-Python resources with markdown and emoji
combined_content += "# Resource ๐Ÿ› ๏ธ\n" + "```" + resource + "```\n\n"
# Save the combined content to a Markdown file
if should_save:
with open(f"{base_filename}.md", 'w') as file:
file.write(combined_content)
# Read it aloud
def readitaloud(result):
documentHTML5='''
<!DOCTYPE html>
<html>
<head>
<title>Read It Aloud</title>
<script type="text/javascript">
function readAloud() {
const text = document.getElementById("textArea").value;
const speech = new SpeechSynthesisUtterance(text);
window.speechSynthesis.speak(speech);
}
</script>
</head>
<body>
<h1>๐Ÿ”Š Read It Aloud</h1>
<textarea id="textArea" rows="10" cols="80">
'''
documentHTML5 = documentHTML5 + result
documentHTML5 = documentHTML5 + '''
</textarea>
<br>
<button onclick="readAloud()">๐Ÿ”Š Read Aloud</button>
</body>
</html>
'''
components.html(documentHTML5, width=800, height=300)
#return result
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
# 3. Stream Llama Response
# @st.cache_resource
def StreamLLMChatResponse(prompt):
# My Inference API Copy
API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud' # Dr Llama
API_KEY = os.getenv('API_KEY')
#try:
endpoint_url = API_URL
hf_token = API_KEY
client = InferenceClient(endpoint_url, token=hf_token)
gen_kwargs = dict(
max_new_tokens=512,
top_k=30,
top_p=0.9,
temperature=0.2,
repetition_penalty=1.02,
stop_sequences=["\nUser:", "<|endoftext|>", "</s>"],
)
stream = client.text_generation(prompt, stream=True, details=True, **gen_kwargs)
report=[]
res_box = st.empty()
collected_chunks=[]
collected_messages=[]
allresults=''
for r in stream:
if r.token.special:
continue
if r.token.text in gen_kwargs["stop_sequences"]:
break
collected_chunks.append(r.token.text)
chunk_message = r.token.text
collected_messages.append(chunk_message)
#try:
report.append(r.token.text)
if len(r.token.text) > 0:
result="".join(report).strip()
res_box.markdown(f'*{result}*')
#except:
#st.write('Stream llm issue')
SpeechSynthesis(result)
return result
#except:
#st.write('Llama model is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).')
# Chat and Chat with files
def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'):
model = model_choice
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
conversation.append({'role': 'user', 'content': prompt})
if len(document_section)>0:
conversation.append({'role': 'assistant', 'content': document_section})
start_time = time.time()
report = []
res_box = st.empty()
collected_chunks = []
collected_messages = []
key = os.getenv('OPENAI_API_KEY')
openai.api_key = key
for chunk in openai.ChatCompletion.create(
model='gpt-3.5-turbo',
messages=conversation,
temperature=0.5,
stream=True
):
collected_chunks.append(chunk) # save the event response
chunk_message = chunk['choices'][0]['delta'] # extract the message
collected_messages.append(chunk_message) # save the message
content=chunk["choices"][0].get("delta",{}).get("content")
try:
report.append(content)
if len(content) > 0:
result = "".join(report).strip()
res_box.markdown(f'*{result}*')
except:
st.write(' ')
full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
st.write("Elapsed time:")
st.write(time.time() - start_time)
readitaloud(full_reply_content)
filename = generate_filename(full_reply_content, choice)
create_file(filename, prompt, full_reply_content, should_save)
return full_reply_content
def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'):
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
conversation.append({'role': 'user', 'content': prompt})
if len(file_content)>0:
conversation.append({'role': 'assistant', 'content': file_content})
response = openai.ChatCompletion.create(model=model_choice, messages=conversation)
return response['choices'][0]['message']['content']
def link_button_with_emoji(url, title, emoji_summary):
emojis = ["๐Ÿ’‰", "๐Ÿฅ", "๐ŸŒก๏ธ", "๐Ÿฉบ", "๐Ÿ”ฌ", "๐Ÿ’Š", "๐Ÿงช", "๐Ÿ‘จโ€โš•๏ธ", "๐Ÿ‘ฉโ€โš•๏ธ"]
random_emoji = random.choice(emojis)
st.markdown(f"[{random_emoji} {emoji_summary} - {title}]({url})")
# Homunculus parts and their corresponding emojis
homunculus_parts = {
"Head": "๐Ÿง ", "Brain": "๐Ÿง ", "Left Eye": "๐Ÿ‘๏ธ", "Right Eye": "๐Ÿ‘๏ธ",
"Left Eyebrow": "๐Ÿคจ", "Right Eyebrow": "๐Ÿคจ", "Nose": "๐Ÿ‘ƒ",
"Mouth": "๐Ÿ‘„", "Neck": "๐Ÿงฃ", "Left Shoulder": "๐Ÿ’ช",
"Right Shoulder": "๐Ÿ’ช", "Left Upper Arm": "๐Ÿ’ช",
"Right Upper Arm": "๐Ÿ’ช", "Left Elbow": "๐Ÿ’ช",
"Right Elbow": "๐Ÿ’ช", "Left Forearm": "๐Ÿ’ช",
"Right Forearm": "๐Ÿ’ช", "Left Wrist": "โœŠ",
"Right Wrist": "โœŠ", "Left Hand": "๐Ÿคฒ",
"Right Hand": "๐Ÿคฒ", "Chest": "๐Ÿ‘•",
"Abdomen": "๐Ÿ‘•", "Pelvis": "๐Ÿฉฒ",
"Left Hip": "๐Ÿฆต", "Right Hip": "๐Ÿฆต",
"Left Thigh": "๐Ÿฆต", "Right Thigh": "๐Ÿฆต",
"Left Knee": "๐Ÿฆต", "Right Knee": "๐Ÿฆต",
"Left Shin": "๐Ÿฆต", "Right Shin": "๐Ÿฆต"
}
homunculus_parts_extended = {
"Head": "๐Ÿง  (Center of Thought and Control)",
"Brain": "๐Ÿง  (Organ of Intelligence and Processing)",
"Left Eye": "๐Ÿ‘๏ธ (Vision and Perception - Left)",
"Right Eye": "๐Ÿ‘๏ธ (Vision and Perception - Right)",
"Left Eyebrow": "๐Ÿคจ (Facial Expression - Left Eyebrow)",
"Right Eyebrow": "๐Ÿคจ (Facial Expression - Right Eyebrow)",
"Nose": "๐Ÿ‘ƒ (Smell and Breathing)",
"Mouth": "๐Ÿ‘„ (Speech and Eating)",
"Neck": "๐Ÿงฃ (Support and Movement of Head)",
"Left Shoulder": "๐Ÿ’ช (Arm Movement and Strength - Left)",
"Right Shoulder": "๐Ÿ’ช (Arm Movement and Strength - Right)",
"Left Upper Arm": "๐Ÿ’ช (Support and Lifting - Left Upper)",
"Right Upper Arm": "๐Ÿ’ช (Support and Lifting - Right Upper)",
"Left Elbow": "๐Ÿ’ช (Arm Bending and Flexing - Left)",
"Right Elbow": "๐Ÿ’ช (Arm Bending and Flexing - Right)",
"Left Forearm": "๐Ÿ’ช (Wrist and Hand Movement - Left)",
"Right Forearm": "๐Ÿ’ช (Wrist and Hand Movement - Right)",
"Left Wrist": "โœŠ (Hand Articulation and Rotation - Left)",
"Right Wrist": "โœŠ (Hand Articulation and Rotation - Right)",
"Left Hand": "๐Ÿคฒ (Grasping and Touch - Left)",
"Right Hand": "๐Ÿคฒ (Grasping and Touch - Right)",
"Chest": "๐Ÿ‘• (Protection of Heart and Lungs)",
"Abdomen": "๐Ÿ‘• (Digestive Organs and Processing)",
"Pelvis": "๐Ÿฉฒ (Support for Lower Limbs and Organs)",
"Left Hip": "๐Ÿฆต (Support and Movement - Left Hip)",
"Right Hip": "๐Ÿฆต (Support and Movement - Right Hip)",
"Left Thigh": "๐Ÿฆต (Support and Movement - Left Thigh)",
"Right Thigh": "๐Ÿฆต (Support and Movement - Right Thigh)",
"Left Knee": "๐Ÿฆต (Leg Bending and Flexing - Left)",
"Right Knee": "๐Ÿฆต (Leg Bending and Flexing - Right)",
"Left Shin": "๐Ÿฆต (Lower Leg Support - Left)",
"Right Shin": "๐Ÿฆต (Lower Leg Support - Right)",
"Left Foot": "๐Ÿฆถ (Support, Balance, and Locomotion - Left)",
"Right Foot": "๐Ÿฆถ (Support, Balance, and Locomotion - Right)"
}
# Function to display the homunculus parts with expanders and chat buttons
def display_homunculus_parts():
st.title("Homunculus Model")
with st.expander(f"Head ({homunculus_parts_extended['Head']})", expanded=False):
head_parts = ["Left Eye", "Right Eye", "Left Eyebrow", "Right Eyebrow", "Nose", "Mouth"]
for part in head_parts:
# Extracting the function/description from the extended dictionary
part_description = homunculus_parts_extended[part].split('(')[1].rstrip(')')
prompt = f"Learn about the key features and functions of the {part} - {part_description}"
if st.button(f"Explore {part}", key=part):
#response = chat_with_model(prompt, part) # GPT
response = StreamLLMChatResponse(prompt) # Llama
with st.expander(f"Brain ({homunculus_parts['Brain']})", expanded=False):
brain_parts = {
"Neocortex": "๐ŸŒ€ - Involved in higher-order brain functions such as sensory perception, cognition, and spatial reasoning.",
"Limbic System": "โค๏ธ - Supports functions including emotion, behavior, motivation, long-term memory, and olfaction.",
"Brainstem": "๐ŸŒฑ - Controls basic body functions like breathing, swallowing, heart rate, blood pressure, and consciousness.",
"Cerebellum": "๐Ÿงฉ - Coordinates voluntary movements like posture, balance, and speech, resulting in smooth muscular activity.",
"Thalamus": "๐Ÿ”” - Channels sensory and motor signals to the cerebral cortex, and regulates consciousness and sleep.",
"Hypothalamus": "๐ŸŒก๏ธ - Controls body temperature, hunger, thirst, fatigue, and circadian cycles.",
"Hippocampus": "๐Ÿš - Essential for the formation of new memories and associated with learning and emotions.",
"Frontal Lobe": "๐Ÿ’ก - Associated with decision making, problem solving, and planning.",
"Parietal Lobe": "๐Ÿคš - Processes sensory information it receives from the outside world, mainly relating to spatial sense and navigation.",
"Temporal Lobe": "๐Ÿ‘‚ - Involved in processing auditory information and is also important for the processing of semantics in both speech and vision.",
"Occipital Lobe": "๐Ÿ‘๏ธ - Main center for visual processing."
}
for part, description in brain_parts.items():
# Formatting the prompt in markdown style for enhanced learning
prompt = f"Create a markdown outline with emojis to explain the {part} and its role in the brain: {description}"
if st.button(f"Explore {part} ๐Ÿง ", key=part):
#response = chat_with_model(prompt, part)
response = StreamLLMChatResponse(prompt) # Llama
# Displaying central body parts
central_parts = ["Neck", "Chest", "Abdomen", "Pelvis"]
for part in central_parts:
with st.expander(f"{part} ({homunculus_parts_extended[part]})", expanded=False):
prompt = f"Learn about the key features and functions of the {part} - {homunculus_parts_extended[part].split(' ')[-1]}"
if st.button(f"Explore {part} ๐Ÿงฃ", key=part):
#response = chat_with_model(prompt, part)
response = StreamLLMChatResponse(prompt) # Llama
# Displaying symmetric body parts
symmetric_parts = ["Shoulder", "Upper Arm", "Elbow", "Forearm", "Wrist", "Hand", "Hip", "Thigh", "Knee", "Shin", "Foot"]
for part in symmetric_parts:
col1, col2 = st.columns(2)
with col1:
with st.expander(f"Left {part} ({homunculus_parts_extended[f'Left {part}']})", expanded=False):
prompt = f"Learn about the key features and functions of the Left {part} - {homunculus_parts_extended[f'Left {part}'].split(' ')[-1]}"
if st.button(f"Explore Left {part} ๐Ÿ’ช", key=f"Left {part}"):
#response = chat_with_model(prompt, f"Left {part}")
response = StreamLLMChatResponse(prompt) # Llama
with col2:
with st.expander(f"Right {part} ({homunculus_parts_extended[f'Right {part}']})", expanded=False):
prompt = f"Learn about the key features and functions of the Right {part} - {homunculus_parts_extended[f'Right {part}'].split(' ')[-1]}"
if st.button(f"Explore Right {part} ๐Ÿ’ช", key=f"Right {part}"):
#response = chat_with_model(prompt, f"Right {part}")
response = StreamLLMChatResponse(prompt) # Llama
# Define function to add paper buttons and links
def add_paper_buttons_and_links():
# Homunculus
page = st.sidebar.radio("Choose a page:", ["Detailed Homunculus Model"])
if page == "Detailed Homunculus Model":
display_homunculus_parts()
col1, col2, col3, col4 = st.columns(4)
with col1:
with st.expander("MemGPT ๐Ÿง ๐Ÿ’พ", expanded=False):
link_button_with_emoji("https://arxiv.org/abs/2310.08560", "MemGPT", "๐Ÿง ๐Ÿ’พ Memory OS")
outline_memgpt = "Memory Hierarchy, Context Paging, Self-directed Memory Updates, Memory Editing, Memory Retrieval, Preprompt Instructions, Semantic Memory, Episodic Memory, Emotional Contextual Understanding"
if st.button("Discuss MemGPT Features"):
prompt = "Discuss the key features of MemGPT: " + outline_memgpt
#chat_with_model(prompt, "MemGPT")
response = StreamLLMChatResponse(prompt) # Llama
with col2:
with st.expander("AutoGen ๐Ÿค–๐Ÿ”—", expanded=False):
link_button_with_emoji("https://arxiv.org/abs/2308.08155", "AutoGen", "๐Ÿค–๐Ÿ”— Multi-Agent LLM")
outline_autogen = "Cooperative Conversations, Combining Capabilities, Complex Task Solving, Divergent Thinking, Factuality, Highly Capable Agents, Generic Abstraction, Effective Implementation"
if st.button("Explore AutoGen Multi-Agent LLM"):
prompt = "Explore the key features of AutoGen: " + outline_autogen
#chat_with_model(prompt, "AutoGen")
response = StreamLLMChatResponse(prompt) # Llama
with col3:
with st.expander("Whisper ๐Ÿ”Š๐Ÿง‘โ€๐Ÿš€", expanded=False):
link_button_with_emoji("https://arxiv.org/abs/2212.04356", "Whisper", "๐Ÿ”Š๐Ÿง‘โ€๐Ÿš€ Robust STT")
outline_whisper = "Scaling, Deep Learning Approaches, Weak Supervision, Zero-shot Transfer Learning, Accuracy & Robustness, Pre-training Techniques, Broad Range of Environments, Combining Multiple Datasets"
if st.button("Learn About Whisper STT"):
prompt = "Learn about the key features of Whisper: " + outline_whisper
#chat_with_model(prompt, "Whisper")
response = StreamLLMChatResponse(prompt) # Llama
with col4:
with st.expander("ChatDev ๐Ÿ’ฌ๐Ÿ’ป", expanded=False):
link_button_with_emoji("https://arxiv.org/pdf/2307.07924.pdf", "ChatDev", "๐Ÿ’ฌ๐Ÿ’ป Comm. Agents")
outline_chatdev = "Effective Communication, Comprehensive Software Solutions, Diverse Social Identities, Tailored Codes, Environment Dependencies, User Manuals"
if st.button("Deep Dive into ChatDev"):
prompt = "Deep dive into the features of ChatDev: " + outline_chatdev
#chat_with_model(prompt, "ChatDev")
response = StreamLLMChatResponse(prompt) # Llama
add_paper_buttons_and_links()
# Process user input is a post processor algorithm which runs after document embedding vector DB play of GPT on context of documents..
def process_user_input(user_question):
# Check and initialize 'conversation' in session state if not present
if 'conversation' not in st.session_state:
st.session_state.conversation = {} # Initialize with an empty dictionary or an appropriate default value
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
template = user_template if i % 2 == 0 else bot_template
st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
# Save file output from PDF query results
filename = generate_filename(user_question, 'txt')
create_file(filename, user_question, message.content, should_save)
# New functionality to create expanders and buttons
create_expanders_and_buttons(message.content)
def create_expanders_and_buttons(content):
# Split the content into paragraphs
paragraphs = content.split("\n\n")
for paragraph in paragraphs:
# Identify the header and detail in the paragraph
header, detail = extract_feature_and_detail(paragraph)
if header and detail:
with st.expander(header, expanded=False):
if st.button(f"Explore {header}"):
expanded_outline = "Expand on the feature: " + detail
#chat_with_model(expanded_outline, header)
response = StreamLLMChatResponse(expanded_outline) # Llama
def extract_feature_and_detail(paragraph):
# Use regex to find the header and detail in the paragraph
match = re.match(r"(.*?):(.*)", paragraph)
if match:
header = match.group(1).strip()
detail = match.group(2).strip()
return header, detail
return None, None
def transcribe_audio(file_path, model):
key = os.getenv('OPENAI_API_KEY')
headers = {
"Authorization": f"Bearer {key}",
}
with open(file_path, 'rb') as f:
data = {'file': f}
st.write("Read file {file_path}", file_path)
OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
if response.status_code == 200:
st.write(response.json())
prompt = response.json().get('text')
chatResponse = chat_with_model(prompt, '') # *************************************
response = StreamLLMChatResponse(prompt) # Llama
transcript = response.json().get('text')
#st.write('Responses:')
#st.write(chatResponse)
filename = generate_filename(transcript, 'txt')
#create_file(filename, transcript, chatResponse)
response = chatResponse
user_prompt = transcript
create_file(filename, user_prompt, response, should_save)
return transcript
else:
st.write(response.json())
st.error("Error in API call.")
return None
def save_and_play_audio(audio_recorder):
audio_bytes = audio_recorder()
if audio_bytes:
filename = generate_filename("Recording", "wav")
with open(filename, 'wb') as f:
f.write(audio_bytes)
st.audio(audio_bytes, format="audio/wav")
return filename
return None
def truncate_document(document, length):
return document[:length]
def divide_document(document, max_length):
return [document[i:i+max_length] for i in range(0, len(document), max_length)]
def get_table_download_link(file_path):
with open(file_path, 'r') as file:
try:
data = file.read()
except:
st.write('')
return file_path
b64 = base64.b64encode(data.encode()).decode()
file_name = os.path.basename(file_path)
ext = os.path.splitext(file_name)[1] # get the file extension
if ext == '.txt':
mime_type = 'text/plain'
elif ext == '.py':
mime_type = 'text/plain'
elif ext == '.xlsx':
mime_type = 'text/plain'
elif ext == '.csv':
mime_type = 'text/plain'
elif ext == '.htm':
mime_type = 'text/html'
elif ext == '.md':
mime_type = 'text/markdown'
else:
mime_type = 'application/octet-stream' # general binary data type
href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
return href
def CompressXML(xml_text):
root = ET.fromstring(xml_text)
for elem in list(root.iter()):
if isinstance(elem.tag, str) and 'Comment' in elem.tag:
elem.parent.remove(elem)
return ET.tostring(root, encoding='unicode', method="xml")
def read_file_content(file,max_length):
if file.type == "application/json":
content = json.load(file)
return str(content)
elif file.type == "text/html" or file.type == "text/htm":
content = BeautifulSoup(file, "html.parser")
return content.text
elif file.type == "application/xml" or file.type == "text/xml":
tree = ET.parse(file)
root = tree.getroot()
xml = CompressXML(ET.tostring(root, encoding='unicode'))
return xml
elif file.type == "text/markdown" or file.type == "text/md":
md = mistune.create_markdown()
content = md(file.read().decode())
return content
elif file.type == "text/plain":
return file.getvalue().decode()
else:
return ""
def extract_mime_type(file):
# Check if the input is a string
if isinstance(file, str):
pattern = r"type='(.*?)'"
match = re.search(pattern, file)
if match:
return match.group(1)
else:
raise ValueError(f"Unable to extract MIME type from {file}")
# If it's not a string, assume it's a streamlit.UploadedFile object
elif isinstance(file, streamlit.UploadedFile):
return file.type
else:
raise TypeError("Input should be a string or a streamlit.UploadedFile object")
def extract_file_extension(file):
# get the file name directly from the UploadedFile object
file_name = file.name
pattern = r".*?\.(.*?)$"
match = re.search(pattern, file_name)
if match:
return match.group(1)
else:
raise ValueError(f"Unable to extract file extension from {file_name}")
def pdf2txt(docs):
text = ""
for file in docs:
file_extension = extract_file_extension(file)
# print the file extension
st.write(f"File type extension: {file_extension}")
# read the file according to its extension
try:
if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']:
text += file.getvalue().decode('utf-8')
elif file_extension.lower() == 'pdf':
from PyPDF2 import PdfReader
pdf = PdfReader(BytesIO(file.getvalue()))
for page in range(len(pdf.pages)):
text += pdf.pages[page].extract_text() # new PyPDF2 syntax
except Exception as e:
st.write(f"Error processing file {file.name}: {e}")
return text
def txt2chunks(text):
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
return text_splitter.split_text(text)
def vector_store(text_chunks):
key = os.getenv('OPENAI_API_KEY')
embeddings = OpenAIEmbeddings(openai_api_key=key)
return FAISS.from_texts(texts=text_chunks, embedding=embeddings)
def get_chain(vectorstore):
llm = ChatOpenAI()
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory)
def divide_prompt(prompt, max_length):
words = prompt.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
if len(word) + current_length <= max_length:
current_length += len(word) + 1 # Adding 1 to account for spaces
current_chunk.append(word)
else:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
current_length = len(word)
chunks.append(' '.join(current_chunk)) # Append the final chunk
return chunks
def create_zip_of_files(files):
"""
Create a zip file from a list of files.
"""
zip_name = "all_files.zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for file in files:
zipf.write(file)
return zip_name
def get_zip_download_link(zip_file):
"""
Generate a link to download the zip file.
"""
with open(zip_file, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
return href
def main():
# Audio, transcribe, GPT:
filename = save_and_play_audio(audio_recorder)
if filename is not None:
try:
transcription = transcribe_audio(filename, "whisper-1")
except:
st.write(' ')
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
filename = None
# prompt interfaces
user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)
# file section interface for prompts against large documents as context
collength, colupload = st.columns([2,3]) # adjust the ratio as needed
with collength:
max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
with colupload:
uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"])
# Document section chat
document_sections = deque()
document_responses = {}
if uploaded_file is not None:
file_content = read_file_content(uploaded_file, max_length)
document_sections.extend(divide_document(file_content, max_length))
if len(document_sections) > 0:
if st.button("๐Ÿ‘๏ธ View Upload"):
st.markdown("**Sections of the uploaded file:**")
for i, section in enumerate(list(document_sections)):
st.markdown(f"**Section {i+1}**\n{section}")
st.markdown("**Chat with the model:**")
for i, section in enumerate(list(document_sections)):
if i in document_responses:
st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
else:
if st.button(f"Chat about Section {i+1}"):
st.write('Reasoning with your inputs...')
#response = chat_with_model(user_prompt, section, model_choice)
response = StreamLLMChatResponse(user_prompt + ' ' + section) # Llama
st.write('Response:')
st.write(response)
document_responses[i] = response
filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
create_file(filename, user_prompt, response, should_save)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
if st.button('๐Ÿ’ฌ Chat'):
st.write('Reasoning with your inputs...')
# Divide the user_prompt into smaller sections
user_prompt_sections = divide_prompt(user_prompt, max_length)
full_response = ''
for prompt_section in user_prompt_sections:
# Process each section with the model
#response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice)
response = StreamLLMChatResponse(prompt_section + ''.join(list(document_sections))) # Llama
full_response += response + '\n' # Combine the responses
response = full_response
st.write('Response:')
st.write(response)
filename = generate_filename(user_prompt, choice)
create_file(filename, user_prompt, response, should_save)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
all_files = glob.glob("*.*")
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20] # exclude files with short names
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order
# Sidebar buttons Download All and Delete All
colDownloadAll, colDeleteAll = st.sidebar.columns([3,3])
with colDownloadAll:
if st.button("โฌ‡๏ธ Download All"):
zip_file = create_zip_of_files(all_files)
st.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
with colDeleteAll:
if st.button("๐Ÿ—‘ Delete All"):
for file in all_files:
os.remove(file)
st.experimental_rerun()
# Sidebar of Files Saving History and surfacing files as context of prompts and responses
file_contents=''
next_action=''
for file in all_files:
col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1]) # adjust the ratio as needed
with col1:
if st.button("๐ŸŒ", key="md_"+file): # md emoji button
with open(file, 'r') as f:
file_contents = f.read()
next_action='md'
with col2:
st.markdown(get_table_download_link(file), unsafe_allow_html=True)
with col3:
if st.button("๐Ÿ“‚", key="open_"+file): # open emoji button
with open(file, 'r') as f:
file_contents = f.read()
next_action='open'
with col4:
if st.button("๐Ÿ”", key="read_"+file): # search emoji button
with open(file, 'r') as f:
file_contents = f.read()
next_action='search'
with col5:
if st.button("๐Ÿ—‘", key="delete_"+file):
os.remove(file)
st.experimental_rerun()
if len(file_contents) > 0:
if next_action=='open':
file_content_area = st.text_area("File Contents:", file_contents, height=500)
if next_action=='md':
st.markdown(file_contents)
if next_action=='search':
file_content_area = st.text_area("File Contents:", file_contents, height=500)
st.write('Reasoning with your inputs...')
#response = chat_with_model(user_prompt, file_contents, model_choice)
response = StreamLLMChatResponse(user_prompt + ' ' + file_contents) # Llama
filename = generate_filename(file_contents, choice)
create_file(filename, user_prompt, response, should_save)
st.experimental_rerun()
if __name__ == "__main__":
main()
load_dotenv()
st.write(css, unsafe_allow_html=True)
st.header("Chat with documents :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
process_user_input(user_question)
with st.sidebar:
st.subheader("Your documents")
docs = st.file_uploader("import documents", accept_multiple_files=True)
with st.spinner("Processing"):
raw = pdf2txt(docs)
if len(raw) > 0:
length = str(len(raw))
text_chunks = txt2chunks(raw)
vectorstore = vector_store(text_chunks)
st.session_state.conversation = get_chain(vectorstore)
st.markdown('# AI Search Index of Length:' + length + ' Created.') # add timing
filename = generate_filename(raw, 'txt')
create_file(filename, raw, '', should_save)