Spaces:
Build error
Build error
File size: 7,063 Bytes
4d357c1 d41626c 4d357c1 d41626c 4d357c1 d41626c ab63854 d41626c ab63854 d41626c ab63854 d41626c 76a40b0 d41626c 76a40b0 d41626c ab63854 d41626c 580fa83 738fe1e d41626c aba2600 d41626c 20175be d41626c 580fa83 d41626c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import gradio as gr
import logging
import sys
import tempfile
import numpy as np
import datetime
from transformers import pipeline, AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
from typing import Optional
from TTS.utils.manage import ModelManager
from TTS.utils.synthesizer import Synthesizer
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
LARGE_MODEL_BY_LANGUAGE = {
"Arabic": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-arabic", "has_lm": False},
"Chinese": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn", "has_lm": False},
#"Dutch": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-dutch", "has_lm": False},
"English": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-english", "has_lm": True},
"Finnish": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-finnish", "has_lm": False},
"French": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-french", "has_lm": True},
"German": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-german", "has_lm": True},
"Greek": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-greek", "has_lm": False},
"Hungarian": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-hungarian", "has_lm": False},
"Italian": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-italian", "has_lm": True},
"Japanese": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-japanese", "has_lm": False},
"Persian": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-persian", "has_lm": False},
"Polish": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-polish", "has_lm": True},
"Portuguese": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-portuguese", "has_lm": True},
"Russian": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-russian", "has_lm": True},
"Spanish": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-spanish", "has_lm": True},
}
XLARGE_MODEL_BY_LANGUAGE = {
"English": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-english", "has_lm": True},
"Spanish": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-spanish", "has_lm": True},
"German": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-german", "has_lm": True},
"Russian": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-russian", "has_lm": True},
"French": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-french", "has_lm": True},
"Italian": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-italian", "has_lm": True},
#"Dutch": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-dutch", "has_lm": False},
"Polish": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-polish", "has_lm": True},
"Portuguese": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-portuguese", "has_lm": True},
}
# LANGUAGES = sorted(LARGE_MODEL_BY_LANGUAGE.keys())
# the container given by HF has 16GB of RAM, so we need to limit the number of models to load
LANGUAGES = sorted(XLARGE_MODEL_BY_LANGUAGE.keys())
CACHED_MODELS_BY_ID = {}
def run(input_file, language, decoding_type, history, model_size="300M"):
logger.info(f"Running ASR {language}-{model_size}-{decoding_type} for {input_file}")
history = history or []
if model_size == "300M":
model = LARGE_MODEL_BY_LANGUAGE.get(language, None)
else:
model = XLARGE_MODEL_BY_LANGUAGE.get(language, None)
if model is None:
history.append({
"error_message": f"Model size {model_size} not found for {language} language :("
})
elif decoding_type == "LM" and not model["has_lm"]:
history.append({
"error_message": f"LM not available for {language} language :("
})
else:
# model_instance = AutoModelForCTC.from_pretrained(model["model_id"])
model_instance = CACHED_MODELS_BY_ID.get(model["model_id"], None)
if model_instance is None:
model_instance = AutoModelForCTC.from_pretrained(model["model_id"])
CACHED_MODELS_BY_ID[model["model_id"]] = model_instance
if decoding_type == "LM":
processor = Wav2Vec2ProcessorWithLM.from_pretrained(model["model_id"])
asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor, decoder=processor.decoder)
else:
processor = Wav2Vec2Processor.from_pretrained(model["model_id"])
asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor, decoder=None)
transcription = asr(input_file, chunk_length_s=5, stride_length_s=1)["text"]
logger.info(f"Transcription for {input_file}: {transcription}")
history.append({
"model_id": model["model_id"],
"language": language,
"model_size": model_size,
"decoding_type": decoding_type,
"transcription": transcription,
"error_message": None
})
html_output = "<div class='result'>"
for item in history:
if item["error_message"] is not None:
html_output += f"<div class='result_item result_item_error'>{item['error_message']}</div>"
else:
url_suffix = " + LM" if item["decoding_type"] == "LM" else ""
html_output += "<div class='result_item result_item_success'>"
html_output += f'<strong><a target="_blank" href="https://huggingface.co/{item["model_id"]}">{item["model_id"]}{url_suffix}</a></strong><br/><br/>'
html_output += f'{item["transcription"]}<br/>'
html_output += "</div>"
html_output += "</div>"
return html_output, history
gr.Interface(
run,
inputs=[
#gr.inputs.Audio(source="microphone", type="filepath", label="Record something..."),
gr.Audio(source="microphone", type='filepath', streaming=True),
#gr.inputs.Audio(source="microphone", type="filepath", label="Record something...", streaming="True"),
gr.inputs.Radio(label="Language", choices=LANGUAGES),
gr.inputs.Radio(label="Decoding type", choices=["greedy", "LM"]),
# gr.inputs.Radio(label="Model size", choices=["300M", "1B"]),
"state"
],
outputs=[
gr.outputs.HTML(label="Outputs"),
"state"
],
title="🗣️NLP ASR Wav2Vec2 GR📄",
description="",
css="""
.result {display:flex;flex-direction:column}
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
.result_item_error {background-color:#ff7070;color:white;align-self:start}
""",
allow_screenshot=False,
allow_flagging="never",
theme="grass",
live=True # test1
).launch(enable_queue=True) |