File size: 6,853 Bytes
4d357c1
d41626c
 
4d357c1
 
 
 
d41626c
4d357c1
 
 
 
d41626c
 
 
 
 
 
 
 
 
 
 
 
ab63854
d41626c
 
 
 
ab63854
d41626c
 
ab63854
 
d41626c
 
 
 
 
 
 
 
76a40b0
d41626c
76a40b0
 
d41626c
ab63854
d41626c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20175be
d41626c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import gradio as gr
import logging
import sys
import tempfile
import numpy as np
import datetime

from transformers import pipeline, AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
from typing import Optional
from TTS.utils.manage import ModelManager
from TTS.utils.synthesizer import Synthesizer

logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    handlers=[logging.StreamHandler(sys.stdout)],
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)


LARGE_MODEL_BY_LANGUAGE = {
    "Arabic": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-arabic", "has_lm": False},
    "Chinese": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn", "has_lm": False},
    #"Dutch": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-dutch", "has_lm": False},
    "English": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-english", "has_lm": True},
    "Finnish": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-finnish", "has_lm": False},
    "French": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-french", "has_lm": True},
    "German": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-german", "has_lm": True},
    "Greek": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-greek", "has_lm": False},
    "Hungarian": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-hungarian", "has_lm": False},
    "Italian": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-italian", "has_lm": True},
    "Japanese": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-japanese", "has_lm": False},
    "Persian": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-persian", "has_lm": False},
    "Polish": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-polish", "has_lm": True},
    "Portuguese": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-portuguese", "has_lm": True},
    "Russian": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-russian", "has_lm": True},
    "Spanish": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-spanish", "has_lm": True},
}

XLARGE_MODEL_BY_LANGUAGE = {
    "English": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-english", "has_lm": True},
    "Spanish": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-spanish", "has_lm": True},
    "German": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-german", "has_lm": True},
    "Russian": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-russian", "has_lm": True},
    "French": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-french", "has_lm": True},
    "Italian": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-italian", "has_lm": True},
    #"Dutch": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-dutch", "has_lm": False},
    "Polish": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-polish", "has_lm": True},
    "Portuguese": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-portuguese", "has_lm": True},
}


# LANGUAGES = sorted(LARGE_MODEL_BY_LANGUAGE.keys())

# the container given by HF has 16GB of RAM, so we need to limit the number of models to load
LANGUAGES = sorted(XLARGE_MODEL_BY_LANGUAGE.keys())
CACHED_MODELS_BY_ID = {}


def run(input_file, language, decoding_type, history, model_size="300M"):

    logger.info(f"Running ASR {language}-{model_size}-{decoding_type} for {input_file}")

    history = history or []

    if model_size == "300M":
        model = LARGE_MODEL_BY_LANGUAGE.get(language, None)
    else:
        model = XLARGE_MODEL_BY_LANGUAGE.get(language, None)

    if model is None:
        history.append({
            "error_message": f"Model size {model_size} not found for {language} language :("
        })
    elif decoding_type == "LM" and not model["has_lm"]:
        history.append({
            "error_message": f"LM not available for {language} language :("
        })
    else:

        # model_instance = AutoModelForCTC.from_pretrained(model["model_id"])
        model_instance = CACHED_MODELS_BY_ID.get(model["model_id"], None)
        if model_instance is None:
            model_instance = AutoModelForCTC.from_pretrained(model["model_id"])
            CACHED_MODELS_BY_ID[model["model_id"]] = model_instance

        if decoding_type == "LM":
            processor = Wav2Vec2ProcessorWithLM.from_pretrained(model["model_id"])
            asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer, 
                           feature_extractor=processor.feature_extractor, decoder=processor.decoder)
        else:
            processor = Wav2Vec2Processor.from_pretrained(model["model_id"])
            asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer, 
                           feature_extractor=processor.feature_extractor, decoder=None)

        transcription = asr(input_file, chunk_length_s=5, stride_length_s=1)["text"]

        logger.info(f"Transcription for {input_file}: {transcription}")

        history.append({
            "model_id": model["model_id"],
            "language": language,
            "model_size": model_size,
            "decoding_type": decoding_type,
            "transcription": transcription,
            "error_message": None
        })

    html_output = "<div class='result'>"
    for item in history:
        if item["error_message"] is not None:
            html_output += f"<div class='result_item result_item_error'>{item['error_message']}</div>"
        else:
            url_suffix = " + LM" if item["decoding_type"] == "LM" else ""
            html_output += "<div class='result_item result_item_success'>"
            html_output += f'<strong><a target="_blank" href="https://huggingface.co/{item["model_id"]}">{item["model_id"]}{url_suffix}</a></strong><br/><br/>'
            html_output += f'{item["transcription"]}<br/>'
            html_output += "</div>"
    html_output += "</div>"

    return html_output, history


gr.Interface(
    run,
    inputs=[
        gr.inputs.Audio(source="microphone", type="filepath", label="Record something..."),
        gr.inputs.Radio(label="Language", choices=LANGUAGES),
        gr.inputs.Radio(label="Decoding type", choices=["greedy", "LM"]),
        # gr.inputs.Radio(label="Model size", choices=["300M", "1B"]),
        "state"
    ],
    outputs=[
        gr.outputs.HTML(label="Outputs"),
        "state"
    ],
    title="Automatic Speech Recognition",
    description="",
    css="""
    .result {display:flex;flex-direction:column}
    .result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
    .result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
    .result_item_error {background-color:#ff7070;color:white;align-self:start}
    """,
    allow_screenshot=False,
    allow_flagging="never",
    theme="grass"
).launch(enable_queue=True)