Spaces:
Build error
Build error
import gradio as gr | |
#import streamlit as st | |
import logging | |
import sys | |
import tempfile | |
import numpy as np | |
import datetime | |
#import firebase_admin | |
#from firebase_admin import credentials | |
#from firebase_admin import firestore | |
#from transformers import pipeline | |
from transformers import pipeline, AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM | |
from typing import Optional | |
from TTS.utils.manage import ModelManager | |
from TTS.utils.synthesizer import Synthesizer | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
handlers=[logging.StreamHandler(sys.stdout)], | |
) | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.DEBUG) | |
LARGE_MODEL_BY_LANGUAGE = { | |
"Arabic": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-arabic", "has_lm": False}, | |
"Chinese": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn", "has_lm": False}, | |
"Dutch": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-dutch", "has_lm": True}, | |
"English": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-english", "has_lm": True}, | |
"Finnish": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-finnish", "has_lm": False}, | |
"French": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-french", "has_lm": True}, | |
"German": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-german", "has_lm": True}, | |
"Greek": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-greek", "has_lm": False}, | |
"Hungarian": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-hungarian", "has_lm": False}, | |
"Italian": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-italian", "has_lm": True}, | |
"Japanese": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-japanese", "has_lm": False}, | |
"Persian": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-persian", "has_lm": False}, | |
"Polish": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-polish", "has_lm": True}, | |
"Portuguese": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-portuguese", "has_lm": True}, | |
"Russian": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-russian", "has_lm": True}, | |
"Spanish": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-spanish", "has_lm": True}, | |
} | |
XLARGE_MODEL_BY_LANGUAGE = { | |
"English": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-english", "has_lm": True}, | |
"Spanish": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-spanish", "has_lm": True}, | |
"German": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-german", "has_lm": True}, | |
"Russian": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-russian", "has_lm": True}, | |
"French": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-french", "has_lm": True}, | |
"Italian": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-italian", "has_lm": True}, | |
"Dutch": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-dutch", "has_lm": True}, | |
"Polish": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-polish", "has_lm": True}, | |
"Portuguese": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-portuguese", "has_lm": True}, | |
} | |
# LANGUAGES = sorted(LARGE_MODEL_BY_LANGUAGE.keys()) | |
# the container given by HF has 16GB of RAM, so we need to limit the number of models to load | |
LANGUAGES = sorted(XLARGE_MODEL_BY_LANGUAGE.keys()) | |
CACHED_MODELS_BY_ID = {} | |
def run(input_file, language, decoding_type, history, model_size="300M"): | |
logger.info(f"Running ASR {language}-{model_size}-{decoding_type} for {input_file}") | |
history = history or [] | |
if model_size == "300M": | |
model = LARGE_MODEL_BY_LANGUAGE.get(language, None) | |
else: | |
model = XLARGE_MODEL_BY_LANGUAGE.get(language, None) | |
if model is None: | |
history.append({ | |
"error_message": f"Model size {model_size} not found for {language} language :(" | |
}) | |
elif decoding_type == "LM" and not model["has_lm"]: | |
history.append({ | |
"error_message": f"LM not available for {language} language :(" | |
}) | |
else: | |
# model_instance = AutoModelForCTC.from_pretrained(model["model_id"]) | |
model_instance = CACHED_MODELS_BY_ID.get(model["model_id"], None) | |
if model_instance is None: | |
model_instance = AutoModelForCTC.from_pretrained(model["model_id"]) | |
CACHED_MODELS_BY_ID[model["model_id"]] = model_instance | |
if decoding_type == "LM": | |
processor = Wav2Vec2ProcessorWithLM.from_pretrained(model["model_id"]) | |
asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, decoder=processor.decoder) | |
else: | |
processor = Wav2Vec2Processor.from_pretrained(model["model_id"]) | |
asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, decoder=None) | |
transcription = asr(input_file, chunk_length_s=5, stride_length_s=1)["text"] | |
logger.info(f"Transcription for {input_file}: {transcription}") | |
history.append({ | |
"model_id": model["model_id"], | |
"language": language, | |
"model_size": model_size, | |
"decoding_type": decoding_type, | |
"transcription": transcription, | |
"error_message": None | |
}) | |
html_output = "<div class='result'>" | |
for item in history: | |
if item["error_message"] is not None: | |
html_output += f"<div class='result_item result_item_error'>{item['error_message']}</div>" | |
else: | |
url_suffix = " + LM" if item["decoding_type"] == "LM" else "" | |
html_output += "<div class='result_item result_item_success'>" | |
html_output += f'<strong><a target="_blank" href="https://huggingface.co/{item["model_id"]}">{item["model_id"]}{url_suffix}</a></strong><br/><br/>' | |
html_output += f'{item["transcription"]}<br/>' | |
html_output += "</div>" | |
html_output += "</div>" | |
return html_output, history | |
gr.Interface( | |
run, | |
inputs=[ | |
gr.inputs.Audio(source="microphone", type="filepath", label="Record something..."), | |
gr.inputs.Radio(label="Language", choices=LANGUAGES), | |
gr.inputs.Radio(label="Decoding type", choices=["greedy", "LM"]), | |
# gr.inputs.Radio(label="Model size", choices=["300M", "1B"]), | |
"state" | |
], | |
outputs=[ | |
gr.outputs.HTML(label="Outputs"), | |
"state" | |
], | |
title="Automatic Speech Recognition", | |
description="", | |
css=""" | |
.result {display:flex;flex-direction:column} | |
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%} | |
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start} | |
.result_item_error {background-color:#ff7070;color:white;align-self:start} | |
""", | |
allow_screenshot=False, | |
allow_flagging="never", | |
theme="grass" | |
).launch(enable_queue=True) |