Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -9,51 +9,38 @@ import os
|
|
9 |
import uuid
|
10 |
|
11 |
SAMPLE_RATE = 16000
|
12 |
-
|
13 |
model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_en_conformer_transducer_xlarge")
|
14 |
model.change_decoding_strategy(None)
|
15 |
model.eval()
|
16 |
|
17 |
-
|
18 |
def process_audio_file(file):
|
19 |
data, sr = librosa.load(file)
|
20 |
-
|
21 |
if sr != SAMPLE_RATE:
|
22 |
data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE)
|
23 |
-
|
24 |
# monochannel
|
25 |
data = librosa.to_mono(data)
|
26 |
return data
|
27 |
|
28 |
-
|
29 |
def transcribe(audio, state=""):
|
30 |
# Grant additional context
|
31 |
# time.sleep(1)
|
32 |
-
|
33 |
if state is None:
|
34 |
state = ""
|
35 |
-
|
36 |
audio_data = process_audio_file(audio)
|
37 |
-
|
38 |
with tempfile.TemporaryDirectory() as tmpdir:
|
39 |
# Filepath transcribe
|
40 |
audio_path = os.path.join(tmpdir, f'audio_{uuid.uuid4()}.wav')
|
41 |
soundfile.write(audio_path, audio_data, SAMPLE_RATE)
|
42 |
transcriptions = model.transcribe([audio_path])
|
43 |
-
|
44 |
-
# Direct transcribe
|
45 |
# transcriptions = model.transcribe([audio])
|
46 |
-
|
47 |
# if transcriptions form a tuple (from RNNT), extract just "best" hypothesis
|
48 |
if type(transcriptions) == tuple and len(transcriptions) == 2:
|
49 |
transcriptions = transcriptions[0]
|
50 |
-
|
51 |
transcriptions = transcriptions[0]
|
52 |
-
|
53 |
state = state + transcriptions + " "
|
54 |
return state, state
|
55 |
|
56 |
-
|
57 |
iface = gr.Interface(
|
58 |
fn=transcribe,
|
59 |
inputs=[
|
|
|
9 |
import uuid
|
10 |
|
11 |
SAMPLE_RATE = 16000
|
|
|
12 |
model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_en_conformer_transducer_xlarge")
|
13 |
model.change_decoding_strategy(None)
|
14 |
model.eval()
|
15 |
|
|
|
16 |
def process_audio_file(file):
|
17 |
data, sr = librosa.load(file)
|
|
|
18 |
if sr != SAMPLE_RATE:
|
19 |
data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE)
|
|
|
20 |
# monochannel
|
21 |
data = librosa.to_mono(data)
|
22 |
return data
|
23 |
|
|
|
24 |
def transcribe(audio, state=""):
|
25 |
# Grant additional context
|
26 |
# time.sleep(1)
|
|
|
27 |
if state is None:
|
28 |
state = ""
|
|
|
29 |
audio_data = process_audio_file(audio)
|
|
|
30 |
with tempfile.TemporaryDirectory() as tmpdir:
|
31 |
# Filepath transcribe
|
32 |
audio_path = os.path.join(tmpdir, f'audio_{uuid.uuid4()}.wav')
|
33 |
soundfile.write(audio_path, audio_data, SAMPLE_RATE)
|
34 |
transcriptions = model.transcribe([audio_path])
|
35 |
+
# Direct transcribe
|
|
|
36 |
# transcriptions = model.transcribe([audio])
|
|
|
37 |
# if transcriptions form a tuple (from RNNT), extract just "best" hypothesis
|
38 |
if type(transcriptions) == tuple and len(transcriptions) == 2:
|
39 |
transcriptions = transcriptions[0]
|
|
|
40 |
transcriptions = transcriptions[0]
|
|
|
41 |
state = state + transcriptions + " "
|
42 |
return state, state
|
43 |
|
|
|
44 |
iface = gr.Interface(
|
45 |
fn=transcribe,
|
46 |
inputs=[
|