awacke1 commited on
Commit
ca0a025
Β·
verified Β·
1 Parent(s): fce17c6

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +278 -0
app.py ADDED
@@ -0,0 +1,278 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import transformers
3
+ import gradio as gr
4
+ from ragatouille import RAGPretrainedModel
5
+ from huggingface_hub import InferenceClient
6
+ import re
7
+ from datetime import datetime
8
+ import json
9
+ import arxiv
10
+ from utils import get_md_text_abstract, search_cleaner, get_arxiv_live_search
11
+ import os
12
+ import glob
13
+
14
+ # πŸŽ›οΈ App configuration - tweak these knobs for maximum brain power! 🧠πŸ’ͺ
15
+ retrieve_results = 20
16
+ show_examples = True
17
+ llm_models_to_choose = ['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None']
18
+
19
+ # 🎭 LLM acting instructions - "To be, or not to be... verbose" πŸ€”
20
+ generate_kwargs = dict(
21
+ temperature = None,
22
+ max_new_tokens = 512,
23
+ top_p = None,
24
+ do_sample = False,
25
+ )
26
+
27
+ # πŸ§™β€β™‚οΈ Summoning the RAG model - "Accio knowledge!" πŸ“šβœ¨
28
+ RAG = RAGPretrainedModel.from_index("colbert/indexes/arxiv_colbert")
29
+
30
+ try:
31
+ gr.Info("πŸ—οΈ Setting up the knowledge retriever, please wait... πŸ•°οΈ")
32
+ rag_initial_output = RAG.search("What is Generative AI in Healthcare?", k = 1)
33
+ gr.Info("πŸŽ‰ Retriever is up and running! Time to flex those brain muscles! πŸ’ͺ🧠")
34
+ except:
35
+ gr.Warning("😱 Oh no! The retriever took a coffee break. Try again later! β˜•")
36
+
37
+ # πŸ“œ The grand introduction - roll out the red carpet! 🎭
38
+ mark_text = '# πŸ©ΊπŸ” Search Results\n'
39
+ header_text = "## πŸ“šArxivπŸ“–PaperπŸ”Search - πŸ•΅οΈβ€β™€οΈ Uncover, πŸ“ Summarize, and 🧩 Solve πŸ”¬ Research πŸ€”β“ Puzzles ✍️ with πŸ“š Papers and πŸ€– RAG AI 🧠\n"
40
+
41
+ # πŸ•°οΈ Time travel to find when our knowledge was last updated πŸš€
42
+ try:
43
+ with open("README.md", "r") as f:
44
+ mdfile = f.read()
45
+ date_pattern = r'Index Last Updated : \d{4}-\d{2}-\d{2}'
46
+ match = re.search(date_pattern, mdfile)
47
+ date = match.group().split(': ')[1]
48
+ formatted_date = datetime.strptime(date, '%Y-%m-%d').strftime('%d %b %Y')
49
+ header_text += f'Index Last Updated: {formatted_date}\n'
50
+ index_info = f"Semantic Search - up to {formatted_date}"
51
+ except:
52
+ index_info = "Semantic Search"
53
+
54
+ database_choices = [index_info, 'Arxiv Search - Latest - (EXPERIMENTAL)']
55
+
56
+ # πŸ¦‰ Arxiv API - the wise old owl of academic knowledge πŸ“œ
57
+ arx_client = arxiv.Client()
58
+ is_arxiv_available = True
59
+ check_arxiv_result = get_arxiv_live_search("What is Self Rewarding AI and how can it be used in Multi-Agent Systems?", arx_client, retrieve_results)
60
+ if len(check_arxiv_result) == 0:
61
+ is_arxiv_available = False
62
+ print("😴 Arxiv search is taking a nap, switching to default search ...")
63
+ database_choices = [index_info]
64
+
65
+ # 🎭 Show examples - a teaser trailer for your brain! 🍿🧠
66
+ sample_outputs = {
67
+ 'output_placeholder': 'The LLM will provide an answer to your question here...',
68
+ 'search_placeholder': '''
69
+ 1. What is MoE?
70
+ 2. What are Multi Agent Systems?
71
+ 3. What is Self Rewarding AI?
72
+ 4. What is Semantic and Episodic memory?
73
+ 5. What is AutoGen?
74
+ 6. What is ChatDev?
75
+ 7. What is Omniverse?
76
+ 8. What is Lumiere?
77
+ 9. What is SORA?
78
+ '''
79
+ }
80
+
81
+ output_placeholder = sample_outputs['output_placeholder']
82
+ md_text_initial = sample_outputs['search_placeholder']
83
+
84
+ # 🧹 Clean up the RAG output - nobody likes a messy mind! 🧼🧠
85
+ def rag_cleaner(inp):
86
+ rank = inp['rank']
87
+ title = inp['document_metadata']['title']
88
+ content = inp['content']
89
+ date = inp['document_metadata']['_time']
90
+ return f"{rank}. <b> {title} </b> \n Date : {date} \n Abstract: {content}"
91
+
92
+ # 🎭 Craft the perfect prompt - it's showtime for the LLM! 🎬
93
+ def get_prompt_text(question, context, formatted = True, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
94
+ if formatted:
95
+ sys_instruction = f"Context:\n {context} \n Given the following scientific paper abstracts, take a deep breath and let's think step by step to answer the question. Cite the titles of your sources when answering, do not cite links or dates."
96
+ message = f"Question: {question}"
97
+
98
+ if 'mistralai' in llm_model_picked:
99
+ return f"<s>" + f"[INST] {sys_instruction}" + f" {message}[/INST]"
100
+ elif 'gemma' in llm_model_picked:
101
+ return f"<bos><start_of_turn>user\n{sys_instruction}" + f" {message}<end_of_turn>\n"
102
+
103
+ return f"Context:\n {context} \n Given the following info, take a deep breath and let's think step by step to answer the question: {question}. Cite the titles of your sources when answering.\n\n"
104
+
105
+ # πŸ•΅οΈβ€β™€οΈ Get those juicy references - time to go treasure hunting! πŸ’ŽπŸ“š
106
+ def get_references(question, retriever, k = retrieve_results):
107
+ rag_out = retriever.search(query=question, k=k)
108
+ return rag_out
109
+
110
+ def get_rag(message):
111
+ return get_references(message, RAG)
112
+
113
+ # 🎀 Save the response and read it aloud - it's karaoke time for your brain! 🧠🎢
114
+ def SaveResponseAndRead(result):
115
+ documentHTML5='''
116
+ <!DOCTYPE html>
117
+ <html>
118
+ <head>
119
+ <title>Read It Aloud</title>
120
+ <script type="text/javascript">
121
+ function readAloud() {
122
+ const text = document.getElementById("textArea").value;
123
+ const speech = new SpeechSynthesisUtterance(text);
124
+ window.speechSynthesis.speak(speech);
125
+ }
126
+ </script>
127
+ </head>
128
+ <body>
129
+ <h1>πŸ”Š Read It Aloud</h1>
130
+ <textarea id="textArea" rows="10" cols="80">
131
+ '''
132
+ documentHTML5 = documentHTML5 + result
133
+ documentHTML5 = documentHTML5 + '''
134
+ </textarea>
135
+ <br>
136
+ <button onclick="readAloud()">πŸ”Š Read Aloud</button>
137
+ </body>
138
+ </html>
139
+ '''
140
+ gr.HTML(documentHTML5)
141
+
142
+ # πŸ“ File management functions - because even AI needs a filing system! πŸ—„οΈπŸ€–
143
+
144
+ def save_response_as_markdown(question, response):
145
+ timestamp = datetime.now().strftime("%Y%m%d%H%M")
146
+ filename = f"{timestamp}_{question[:50]}.md" # Truncate question to 50 chars for filename
147
+ with open(filename, "w", encoding="utf-8") as f:
148
+ f.write(response)
149
+ return filename
150
+
151
+ def list_markdown_files():
152
+ files = glob.glob("*.md")
153
+ files.sort(key=os.path.getmtime, reverse=True)
154
+ return [f for f in files if f != "README.md"]
155
+
156
+ def delete_file(filename):
157
+ if filename != "README.md":
158
+ os.remove(filename)
159
+ return f"Deleted {filename}"
160
+ return "Cannot delete README.md"
161
+
162
+ def display_markdown_contents():
163
+ files = list_markdown_files()
164
+ output = ""
165
+ for file in files:
166
+ with open(file, "r", encoding="utf-8") as f:
167
+ content = f.read()
168
+ output += f"## {file}\n\n```markdown\n{content}\n```\n\n"
169
+ return output
170
+
171
+ # 🎨 Building the UI - it's like LEGO, but for brains! πŸ§ πŸ—οΈ
172
+ with gr.Blocks(theme = gr.themes.Soft()) as demo:
173
+ header = gr.Markdown(header_text)
174
+
175
+ with gr.Group():
176
+ msg = gr.Textbox(label = 'Search', placeholder = 'What is Generative AI in Healthcare?')
177
+
178
+ with gr.Accordion("Advanced Settings", open=False):
179
+ with gr.Row(equal_height = True):
180
+ llm_model = gr.Dropdown(choices = llm_models_to_choose, value = 'mistralai/Mistral-7B-Instruct-v0.2', label = 'LLM Model')
181
+ llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results as context")
182
+ database_src = gr.Dropdown(choices = database_choices, value = index_info, label = 'Search Source')
183
+ stream_results = gr.Checkbox(value = True, label = "Stream output", visible = False)
184
+
185
+ output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True, placeholder = output_placeholder)
186
+ input = gr.Textbox(show_label = False, visible = False)
187
+ gr_md = gr.Markdown(mark_text + md_text_initial)
188
+
189
+ with gr.Tab("Saved Responses"):
190
+ refresh_button = gr.Button("πŸ”„ Refresh File List")
191
+ file_list = gr.Dropdown(choices=list_markdown_files(), label="Saved Responses")
192
+ delete_button = gr.Button("πŸ—‘οΈ Delete Selected File")
193
+ markdown_display = gr.Markdown()
194
+
195
+ # πŸ”„ Update the file list - keeping things fresh! 🌿
196
+ def update_file_list():
197
+ return gr.Dropdown(choices=list_markdown_files())
198
+
199
+ refresh_button.click(update_file_list, outputs=[file_list])
200
+ delete_button.click(delete_file, inputs=[file_list], outputs=[markdown_display]).then(update_file_list, outputs=[file_list])
201
+ file_list.change(lambda x: open(x, "r", encoding="utf-8").read() if x else "", inputs=[file_list], outputs=[markdown_display])
202
+
203
+ # 🎭 The grand finale - where the magic happens! 🎩✨
204
+ def update_with_rag_md(message, llm_results_use = 5, database_choice = index_info, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
205
+ prompt_text_from_data = ""
206
+ database_to_use = database_choice
207
+ if database_choice == index_info:
208
+ rag_out = get_rag(message)
209
+ else:
210
+ arxiv_search_success = True
211
+ try:
212
+ rag_out = get_arxiv_live_search(message, arx_client, retrieve_results)
213
+ if len(rag_out) == 0:
214
+ arxiv_search_success = False
215
+ except:
216
+ arxiv_search_success = False
217
+
218
+ if not arxiv_search_success:
219
+ gr.Warning("😴 Arxiv Search is taking a siesta, switching to semantic search ...")
220
+ rag_out = get_rag(message)
221
+ database_to_use = index_info
222
+
223
+ md_text_updated = mark_text
224
+ for i in range(retrieve_results):
225
+ rag_answer = rag_out[i]
226
+ if i < llm_results_use:
227
+ md_text_paper, prompt_text = get_md_text_abstract(rag_answer, source = database_to_use, return_prompt_formatting = True)
228
+ prompt_text_from_data += f"{i+1}. {prompt_text}"
229
+ else:
230
+ md_text_paper = get_md_text_abstract(rag_answer, source = database_to_use)
231
+ md_text_updated += md_text_paper
232
+ prompt = get_prompt_text(message, prompt_text_from_data, llm_model_picked = llm_model_picked)
233
+ return md_text_updated, prompt
234
+
235
+ # 🧠 Asking the LLM - it's like a really smart magic 8-ball! 🎱✨
236
+ def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2', stream_outputs = False):
237
+ model_disabled_text = "LLM Model is taking a vacation. Try again later! πŸ–οΈ"
238
+ output = ""
239
+
240
+ if llm_model_picked == 'None':
241
+ if stream_outputs:
242
+ for out in model_disabled_text:
243
+ output += out
244
+ yield output
245
+ return output
246
+ else:
247
+ return model_disabled_text
248
+
249
+ client = InferenceClient(llm_model_picked)
250
+ try:
251
+ stream = client.text_generation(prompt, **generate_kwargs, stream=stream_outputs, details=False, return_full_text=False)
252
+
253
+ except:
254
+ gr.Warning("🚦 LLM Inference hit a traffic jam! Take a breather and try again later.")
255
+ return ""
256
+
257
+ if stream_outputs:
258
+ for response in stream:
259
+ output += response
260
+ SaveResponseAndRead(response)
261
+ yield output
262
+ return output
263
+ else:
264
+ return stream
265
+
266
+ # 🎬 Action! Process the query and save the response
267
+ def process_and_save(message, llm_results_use, database_choice, llm_model_picked):
268
+ md_text_updated, prompt = update_with_rag_md(message, llm_results_use, database_choice, llm_model_picked)
269
+ llm_response = ask_llm(prompt, llm_model_picked, stream_outputs=False)
270
+ full_response = f"Question: {message}\n\nResponse:\n{llm_response}\n\nReferences:\n{md_text_updated}"
271
+ filename = save_response_as_markdown(message, full_response)
272
+ return md_text_updated, prompt, llm_response, filename
273
+
274
+ # 🎬 Lights, camera, action! Let's get this show on the road! πŸš€
275
+ msg.submit(process_and_save, [msg, llm_results, database_src, llm_model], [gr_md, input, output_text, file_list]).then(update_file_list, outputs=[file_list])
276
+
277
+ # πŸŽ‰ Launch the app - let the knowledge party begin! 🎊🧠
278
+ demo.queue().launch()