awacke1 commited on
Commit
37c8622
β€’
1 Parent(s): 9edd069

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +77 -4
app.py CHANGED
@@ -196,9 +196,9 @@ def save_to_cosmos_db(query, response1, response2):
196
  else:
197
  st.error("Cosmos DB is not initialized.")
198
 
199
- # πŸ•΅οΈβ€β™‚οΈ Search Glossary function
 
200
  def search_glossary(query):
201
- # πŸ” Searching the glossaryβ€”uncovering secrets of the universe! πŸ•΅οΈβ€β™‚οΈ
202
  st.markdown(f"### πŸ” Search Glossary for: `{query}`")
203
 
204
  # Dropdown for model selection
@@ -209,12 +209,85 @@ def search_glossary(query):
209
  database_options = ['Semantic Search', 'Arxiv Search - Latest - (EXPERIMENTAL)']
210
  database_choice = st.selectbox('πŸ“š Select Database', options=database_options, index=0)
211
 
 
 
212
  # Run Button with Emoji
213
  if st.button("πŸš€ Run"):
214
- # πŸ•΅οΈβ€β™‚οΈ We have a query! Let's process it!
 
 
 
 
 
 
 
215
  client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216
 
217
- # Rest of the code for processing the query...
 
 
 
 
 
 
 
 
 
 
 
218
 
219
  # 🎀 Function to process text input
220
  def process_text(text_input):
 
196
  else:
197
  st.error("Cosmos DB is not initialized.")
198
 
199
+
200
+ # Add dropdowns for model and database choices
201
  def search_glossary(query):
 
202
  st.markdown(f"### πŸ” Search Glossary for: `{query}`")
203
 
204
  # Dropdown for model selection
 
209
  database_options = ['Semantic Search', 'Arxiv Search - Latest - (EXPERIMENTAL)']
210
  database_choice = st.selectbox('πŸ“š Select Database', options=database_options, index=0)
211
 
212
+
213
+
214
  # Run Button with Emoji
215
  if st.button("πŸš€ Run"):
216
+
217
+ # πŸ•΅οΈβ€β™‚οΈ Searching the glossary for: query
218
+ all_results = ""
219
+ st.markdown(f"- {query}")
220
+
221
+ # πŸ” ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM
222
+ #database_choice Literal['Semantic Search', 'Arxiv Search - Latest - (EXPERIMENTAL)'] Default: "Semantic Search"
223
+ #llm_model_picked Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] Default: "mistralai/Mistral-7B-Instruct-v0.2"
224
  client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
225
+
226
+
227
+ # πŸ” ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM - api_name: /ask_llm
228
+ result = client.predict(
229
+ prompt=query,
230
+ llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1",
231
+ stream_outputs=True,
232
+ api_name="/ask_llm"
233
+ )
234
+ st.markdown(result)
235
+ st.code(result, language="python", line_numbers=True)
236
+ save_to_cosmos_db(query, result, result) # Save both responses to Cosmos DB
237
+
238
+ # πŸ” ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM - api_name: /ask_llm
239
+ result2 = client.predict(
240
+ prompt=query,
241
+ llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
242
+ stream_outputs=True,
243
+ api_name="/ask_llm"
244
+ )
245
+ st.markdown(result2)
246
+ st.code(result2, language="python", line_numbers=True)
247
+ save_to_cosmos_db(query, result2, result2) # Save both responses to Cosmos DB
248
+
249
+ # πŸ” ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM - api_name: /ask_llm
250
+ result3 = client.predict(
251
+ prompt=query,
252
+ llm_model_picked="google/gemma-7b-it",
253
+ stream_outputs=True,
254
+ api_name="/ask_llm"
255
+ )
256
+ st.markdown(result3)
257
+ st.code(result3, language="python", line_numbers=True)
258
+ save_to_cosmos_db(query, result3, result3) # Save both responses to Cosmos DB
259
+
260
+
261
+ # πŸ” ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM - api_name: /update_with_rag_md
262
+ response2 = client.predict(
263
+ message=query, # str in 'parameter_13' Textbox component
264
+ llm_results_use=10,
265
+ database_choice="Semantic Search",
266
+ llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
267
+ api_name="/update_with_rag_md"
268
+ ) # update_with_rag_md Returns tuple of 2 elements [0] str The output value that appears in the "value_14" Markdown component. [1] str
269
+
270
+ st.markdown(response2[0])
271
+ st.code(response2[0], language="python", line_numbers=True, wrap_lines=True)
272
+ save_to_cosmos_db(query, response2[0], response2[0]) # Save both responses to Cosmos DB
273
+
274
+ st.markdown(response2[1])
275
+ st.code(response2[1], language="python", line_numbers=True, wrap_lines=True)
276
+ save_to_cosmos_db(query, response2[1], response2[1]) # Save both responses to Cosmos DB
277
+
278
 
279
+ # Aggregate hyperlinks and show with emojis
280
+ hyperlinks = extract_hyperlinks([response1, response2])
281
+ st.markdown("### πŸ”— Aggregated Hyperlinks")
282
+ for link in hyperlinks:
283
+ st.markdown(f"πŸ”— [{link}]({link})")
284
+
285
+ # Show responses in a code format with line numbers
286
+ st.markdown("### πŸ“œ Response Outputs with Line Numbers")
287
+ st.code(f"Response 1: \n{format_with_line_numbers(response1)}\n\nResponse 2: \n{format_with_line_numbers(response2)}", language="json")
288
+
289
+
290
+
291
 
292
  # 🎀 Function to process text input
293
  def process_text(text_input):