Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -213,29 +213,56 @@ def search_glossary(query):
|
|
213 |
# π ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM
|
214 |
#database_choice Literal['Semantic Search', 'Arxiv Search - Latest - (EXPERIMENTAL)'] Default: "Semantic Search"
|
215 |
#llm_model_picked Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] Default: "mistralai/Mistral-7B-Instruct-v0.2"
|
216 |
-
|
217 |
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
218 |
-
response2 = client.predict(
|
219 |
-
message=query, # str in 'parameter_13' Textbox component
|
220 |
-
llm_results_use=10,
|
221 |
-
database_choice="Semantic Search",
|
222 |
-
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
|
223 |
-
api_name="/update_with_rag_md"
|
224 |
-
)
|
225 |
-
st.markdown(response2)
|
226 |
-
st.code(response2, language="python", line_numbers=True, wrap_lines=True)
|
227 |
|
228 |
-
|
229 |
-
|
230 |
-
# π ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM
|
231 |
result = client.predict(
|
232 |
prompt=query,
|
233 |
-
llm_model_picked="mistralai/
|
234 |
stream_outputs=True,
|
235 |
api_name="/ask_llm"
|
236 |
)
|
237 |
st.markdown(result)
|
238 |
st.code(result, language="python", line_numbers=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
# Aggregate hyperlinks and show with emojis
|
241 |
hyperlinks = extract_hyperlinks([response1, response2])
|
|
|
213 |
# π ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM
|
214 |
#database_choice Literal['Semantic Search', 'Arxiv Search - Latest - (EXPERIMENTAL)'] Default: "Semantic Search"
|
215 |
#llm_model_picked Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] Default: "mistralai/Mistral-7B-Instruct-v0.2"
|
|
|
216 |
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
+
|
219 |
+
# π ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM - api_name: /ask_llm
|
|
|
220 |
result = client.predict(
|
221 |
prompt=query,
|
222 |
+
llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
223 |
stream_outputs=True,
|
224 |
api_name="/ask_llm"
|
225 |
)
|
226 |
st.markdown(result)
|
227 |
st.code(result, language="python", line_numbers=True)
|
228 |
+
|
229 |
+
# π ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM - api_name: /ask_llm
|
230 |
+
result2 = client.predict(
|
231 |
+
prompt=query,
|
232 |
+
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
|
233 |
+
stream_outputs=True,
|
234 |
+
api_name="/ask_llm"
|
235 |
+
)
|
236 |
+
st.markdown(result2)
|
237 |
+
st.code(result2, language="python", line_numbers=True)
|
238 |
+
|
239 |
+
# π ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM - api_name: /ask_llm
|
240 |
+
result3 = client.predict(
|
241 |
+
prompt=query,
|
242 |
+
llm_model_picked="google/gemma-7b-it",
|
243 |
+
stream_outputs=True,
|
244 |
+
api_name="/ask_llm"
|
245 |
+
)
|
246 |
+
st.markdown(result3)
|
247 |
+
st.code(result3, language="python", line_numbers=True)
|
248 |
+
|
249 |
+
|
250 |
+
|
251 |
+
# π ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM - api_name: /update_with_rag_md
|
252 |
+
response2 = client.predict(
|
253 |
+
message=query, # str in 'parameter_13' Textbox component
|
254 |
+
llm_results_use=10,
|
255 |
+
database_choice="Semantic Search",
|
256 |
+
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
|
257 |
+
api_name="/update_with_rag_md"
|
258 |
+
) # update_with_rag_md Returns tuple of 2 elements [0] str The output value that appears in the "value_14" Markdown component. [1] str
|
259 |
+
|
260 |
+
st.markdown(response2[0])
|
261 |
+
st.code(response2[0], language="python", line_numbers=True, wrap_lines=True)
|
262 |
+
|
263 |
+
st.markdown(response2[1])
|
264 |
+
st.code(response2[1], language="python", line_numbers=True, wrap_lines=True)
|
265 |
+
|
266 |
|
267 |
# Aggregate hyperlinks and show with emojis
|
268 |
hyperlinks = extract_hyperlinks([response1, response2])
|