awacke1 commited on
Commit
ac36720
Β·
verified Β·
1 Parent(s): f872af7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -14
app.py CHANGED
@@ -213,29 +213,56 @@ def search_glossary(query):
213
  # πŸ” ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM
214
  #database_choice Literal['Semantic Search', 'Arxiv Search - Latest - (EXPERIMENTAL)'] Default: "Semantic Search"
215
  #llm_model_picked Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] Default: "mistralai/Mistral-7B-Instruct-v0.2"
216
-
217
  client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
218
- response2 = client.predict(
219
- message=query, # str in 'parameter_13' Textbox component
220
- llm_results_use=10,
221
- database_choice="Semantic Search",
222
- llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
223
- api_name="/update_with_rag_md"
224
- )
225
- st.markdown(response2)
226
- st.code(response2, language="python", line_numbers=True, wrap_lines=True)
227
 
228
- #llm_model_picked Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] Default: "mistralai/Mistral-7B-Instruct-v0.2"
229
-
230
- # πŸ” ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM
231
  result = client.predict(
232
  prompt=query,
233
- llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
234
  stream_outputs=True,
235
  api_name="/ask_llm"
236
  )
237
  st.markdown(result)
238
  st.code(result, language="python", line_numbers=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
239
 
240
  # Aggregate hyperlinks and show with emojis
241
  hyperlinks = extract_hyperlinks([response1, response2])
 
213
  # πŸ” ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM
214
  #database_choice Literal['Semantic Search', 'Arxiv Search - Latest - (EXPERIMENTAL)'] Default: "Semantic Search"
215
  #llm_model_picked Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] Default: "mistralai/Mistral-7B-Instruct-v0.2"
 
216
  client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
 
 
 
 
 
 
 
 
 
217
 
218
+
219
+ # πŸ” ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM - api_name: /ask_llm
 
220
  result = client.predict(
221
  prompt=query,
222
+ llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1",
223
  stream_outputs=True,
224
  api_name="/ask_llm"
225
  )
226
  st.markdown(result)
227
  st.code(result, language="python", line_numbers=True)
228
+
229
+ # πŸ” ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM - api_name: /ask_llm
230
+ result2 = client.predict(
231
+ prompt=query,
232
+ llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
233
+ stream_outputs=True,
234
+ api_name="/ask_llm"
235
+ )
236
+ st.markdown(result2)
237
+ st.code(result2, language="python", line_numbers=True)
238
+
239
+ # πŸ” ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM - api_name: /ask_llm
240
+ result3 = client.predict(
241
+ prompt=query,
242
+ llm_model_picked="google/gemma-7b-it",
243
+ stream_outputs=True,
244
+ api_name="/ask_llm"
245
+ )
246
+ st.markdown(result3)
247
+ st.code(result3, language="python", line_numbers=True)
248
+
249
+
250
+
251
+ # πŸ” ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM - api_name: /update_with_rag_md
252
+ response2 = client.predict(
253
+ message=query, # str in 'parameter_13' Textbox component
254
+ llm_results_use=10,
255
+ database_choice="Semantic Search",
256
+ llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
257
+ api_name="/update_with_rag_md"
258
+ ) # update_with_rag_md Returns tuple of 2 elements [0] str The output value that appears in the "value_14" Markdown component. [1] str
259
+
260
+ st.markdown(response2[0])
261
+ st.code(response2[0], language="python", line_numbers=True, wrap_lines=True)
262
+
263
+ st.markdown(response2[1])
264
+ st.code(response2[1], language="python", line_numbers=True, wrap_lines=True)
265
+
266
 
267
  # Aggregate hyperlinks and show with emojis
268
  hyperlinks = extract_hyperlinks([response1, response2])