Spaces:
Running
Running
Update backup11.app.py
Browse files- backup11.app.py +36 -40
backup11.app.py
CHANGED
@@ -54,7 +54,7 @@ LOCAL_APP_URL = "https://huggingface.co/spaces/awacke1/AzureCosmosDBUI"
|
|
54 |
CosmosDBUrl = 'https://portal.azure.com/#@AaronCWackergmail.onmicrosoft.com/resource/subscriptions/003fba60-5b3f-48f4-ab36-3ed11bc40816/resourceGroups/datasets/providers/Microsoft.DocumentDB/databaseAccounts/acae-afd/dataExplorer'
|
55 |
|
56 |
# π€ Anthropic configuration - Teaching machines to be more human (and funnier)
|
57 |
-
|
58 |
|
59 |
# π§ Initialize session state - Because even apps need a good memory
|
60 |
if "chat_history" not in st.session_state:
|
@@ -311,22 +311,33 @@ def archive_current_container(database_name, container_name, client):
|
|
311 |
except Exception as e:
|
312 |
return f"An error occurred while archiving data: {str(e)} π’"
|
313 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
|
315 |
# π Search glossary - Finding needles in digital haystacks
|
316 |
def search_glossary(query):
|
317 |
st.markdown(f"### π SearchGlossary for: {query}")
|
318 |
-
|
319 |
-
|
320 |
-
#model_choice = st.selectbox('π§ Select LLM Model', options=model_options, index=1)
|
321 |
-
# Dropdown for database selection
|
322 |
database_options = ['Semantic Search', 'Arxiv Search - Latest - (EXPERIMENTAL)']
|
323 |
-
|
|
|
324 |
# π΅οΈββοΈ Searching the glossary for: query
|
325 |
all_results = ""
|
326 |
-
#
|
327 |
-
|
|
|
328 |
|
329 |
-
# π
|
330 |
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
331 |
# π ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM - api_name: /ask_llm
|
332 |
result = client.predict(
|
@@ -351,11 +362,6 @@ def search_glossary(query):
|
|
351 |
st.markdown(result2)
|
352 |
#st.code(result2, language="python", line_numbers=True)
|
353 |
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
# π ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM - api_name: /update_with_rag_md
|
360 |
response2 = client.predict(
|
361 |
message=query, # str in 'parameter_13' Textbox component
|
@@ -373,33 +379,23 @@ def search_glossary(query):
|
|
373 |
#st.code(response2[1], language="python", line_numbers=True, wrap_lines=True)
|
374 |
|
375 |
|
376 |
-
# Persist AI Results to Markdown Files
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
#st.session_state.chat_history.append({"assistant": query, "ArXiV": response2[0]})
|
393 |
-
except:
|
394 |
-
st.markdown('3 error')
|
395 |
-
try:
|
396 |
-
filename = generate_filename(response2[1], "md")
|
397 |
-
create_file(filename, query, response2[1])
|
398 |
-
#st.session_state.chat_history.append({"assistant": query, "ArXiV": response2[1]})
|
399 |
-
except:
|
400 |
-
st.markdown('4 error')
|
401 |
|
402 |
-
|
403 |
return result, result2, response2
|
404 |
|
405 |
|
|
|
54 |
CosmosDBUrl = 'https://portal.azure.com/#@AaronCWackergmail.onmicrosoft.com/resource/subscriptions/003fba60-5b3f-48f4-ab36-3ed11bc40816/resourceGroups/datasets/providers/Microsoft.DocumentDB/databaseAccounts/acae-afd/dataExplorer'
|
55 |
|
56 |
# π€ Anthropic configuration - Teaching machines to be more human (and funnier)
|
57 |
+
anthropicclient = anthropic.Anthropic(api_key=os.environ.get("ANTHROPIC_API_KEY"))
|
58 |
|
59 |
# π§ Initialize session state - Because even apps need a good memory
|
60 |
if "chat_history" not in st.session_state:
|
|
|
311 |
except Exception as e:
|
312 |
return f"An error occurred while archiving data: {str(e)} π’"
|
313 |
|
314 |
+
def gen_AI_IO_filename(display_query, output):
|
315 |
+
# Get current time in Central Time Zone with milliseconds
|
316 |
+
now_central = datetime.now(pytz.timezone("America/Chicago"))
|
317 |
+
timestamp = now_central.strftime("%Y-%m-%d-%I-%M-%S-%f-%p")
|
318 |
+
|
319 |
+
# Limit components to prevent excessive filename length
|
320 |
+
display_query = display_query[:50] # Truncate display_query to 50 chars
|
321 |
+
output_snippet = re.sub(r'[^A-Za-z0-9]+', '_', output[:100]) # Truncate output_snippet to 100 chars
|
322 |
+
|
323 |
+
filename = f"{timestamp} - {display_query} - {output_snippet}.md"
|
324 |
+
return filename
|
325 |
|
326 |
# π Search glossary - Finding needles in digital haystacks
|
327 |
def search_glossary(query):
|
328 |
st.markdown(f"### π SearchGlossary for: {query}")
|
329 |
+
model_options = ['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2']
|
330 |
+
model_choice = st.selectbox('π§ Select LLM Model', options=model_options, index=1, key=f"model_choice_{id(query)}")
|
|
|
|
|
331 |
database_options = ['Semantic Search', 'Arxiv Search - Latest - (EXPERIMENTAL)']
|
332 |
+
database_choice = st.selectbox('π Select Database', options=database_options, index=0, key=f"database_choice_{id(query)}")
|
333 |
+
|
334 |
# π΅οΈββοΈ Searching the glossary for: query
|
335 |
all_results = ""
|
336 |
+
# Limit the query display to 80 characters
|
337 |
+
display_query = query[:80] + "..." if len(query) > 80 else query
|
338 |
+
st.markdown(f"π΅οΈββοΈ Running ArXiV AI Analysis with Query: {display_query} - ML model: {model_choice} and Option: {database_options}")
|
339 |
|
340 |
+
# π ArXiV RAG researcher expert ~-<>-~ Paper Summary & Ask LLM
|
341 |
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
342 |
# π ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM - api_name: /ask_llm
|
343 |
result = client.predict(
|
|
|
362 |
st.markdown(result2)
|
363 |
#st.code(result2, language="python", line_numbers=True)
|
364 |
|
|
|
|
|
|
|
|
|
|
|
365 |
# π ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM - api_name: /update_with_rag_md
|
366 |
response2 = client.predict(
|
367 |
message=query, # str in 'parameter_13' Textbox component
|
|
|
379 |
#st.code(response2[1], language="python", line_numbers=True, wrap_lines=True)
|
380 |
|
381 |
|
382 |
+
# β
Persist AI Results to Markdown Files
|
383 |
+
filename = gen_AI_IO_filename(display_query, result)
|
384 |
+
create_file(filename, query, result)
|
385 |
+
st.markdown(f"β
File saved as: `{filename}`")
|
386 |
+
|
387 |
+
filename = gen_AI_IO_filename(display_query, result2)
|
388 |
+
create_file(filename, query, result2)
|
389 |
+
st.markdown(f"β
File saved as: `{filename}`")
|
390 |
+
|
391 |
+
filename = gen_AI_IO_filename(display_query, response2[0])
|
392 |
+
create_file(filename, query, response2[0])
|
393 |
+
st.markdown(f"β
File saved as: `{filename}`")
|
394 |
+
|
395 |
+
filename = gen_AI_IO_filename(display_query, response2[1])
|
396 |
+
create_file(filename, query, response2[1])
|
397 |
+
st.markdown(f"β
File saved as: `{filename}`")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
398 |
|
|
|
399 |
return result, result2, response2
|
400 |
|
401 |
|