Spaces:
Runtime error
Runtime error
File size: 58,284 Bytes
93bff19 e8cf46e 93bff19 d8ff977 e8cf46e bc28acb e8cf46e bc28acb e8cf46e bc28acb a857b87 ece76b0 55d7401 78b5c6a 55d7401 753f915 78b5c6a 8e773c7 55d7401 f50ae47 6327870 54c106b 6327870 54c106b 6327870 f50ae47 72ce293 b0984b8 72ce293 f50ae47 194c9bb b4b2bd3 194c9bb b4b2bd3 194c9bb b4b2bd3 194c9bb 5b3dda4 194c9bb 545b55b bc28acb 4dc1da5 bc28acb ece76b0 8166716 ece76b0 8166716 ece76b0 8166716 ece76b0 8166716 c7715ea 76cca73 d239526 f50ae47 693209f 0f3fdad d239526 44d6790 d239526 44d6790 0f3fdad 88f5796 d239526 44d6790 d239526 0f3fdad 44d6790 0f3fdad 76cca73 693209f df6e848 3ae4abe df6e848 7efa938 ddb8834 fd62e11 5b3dda4 9b796f0 6327870 9b796f0 6327870 9b796f0 6327870 13af9c2 6327870 9b796f0 6327870 9b796f0 bd031a7 9b796f0 4dc1da5 9b796f0 f504bcb 9b796f0 263e41a 76a257f 263e41a 76a257f 263e41a bc28acb 263e41a 717f278 263e41a e07e606 3c2f20e 717f278 b1ea756 717f278 04a29c5 b1ea756 04a29c5 717f278 e07e606 b1ea756 e07e606 b1ea756 717f278 b1ea756 717f278 263e41a 18298aa 263e41a 3c2f20e 263e41a 04a29c5 263e41a 04a29c5 263e41a e0a37a4 83d0e33 e0a37a4 83d0e33 a48447d 545b55b 5a40927 8b1291e 7cf7472 6fb608b 8b1291e 6327870 8b1291e 83d0e33 6327870 c572d3b 9ab19c0 83d0e33 263e41a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 |
import streamlit as st
import streamlit.components.v1 as components
import os
import json
import random
import base64
import glob
import math
import openai
import pytz
import re
import requests
import textract
import time
import zipfile
import huggingface_hub
import dotenv
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import deque
from datetime import datetime
from dotenv import load_dotenv
from huggingface_hub import InferenceClient
from io import BytesIO
from openai import ChatCompletion
from PyPDF2 import PdfReader
from templates import bot_template, css, user_template
from xml.etree import ElementTree as ET
from PIL import Image
from urllib.parse import quote # Ensure this import is included
# Set page configuration with a title and favicon
st.set_page_config(
page_title="🧠💪 Body Map AI",
page_icon="💪🧠",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a bug': "https://huggingface.co/spaces/awacke1",
'About': "Body Map AI By Aaron Wacker - https://huggingface.co/awacke1"
}
)
#PromptPrefix = 'Create a markdown outline and table with appropriate emojis for body map which define the definition parts, function, conditions of the topic of '
#PromptPrefix2 = 'Create a streamlit python user app. Show full code listing. Create a UI implementing each feature using variables, reusable functions with parameters, and data driven app with python libraries and streamlit components for Javascript and HTML5. Use appropriate emojis for labels to summarize and list parts, function, conditions for topic: '
# Prompts for App, for App Product, and App Product Code
PromptPrefix = 'Create a body and brain health, medical, biological and knowledge outline featuring insights for medical and pharmacy professionals with streamlit markdown outlines and tables with appropriate emojis for methodical step by step rules defining the game play rules. Use story structure architect rules to plan, structure and write three dramatic situations to include in the word game rules matching the theme for topic of '
PromptPrefix2 = 'Create a streamlit python app with full code listing to create a UI implementing the plans, structure, situations and tables as python functions creating a body and brain health, medical, biological and knowledge outline featuring insights for medical and pharmacy professionals using streamlit to create user interface elements like emoji buttons, sliders, drop downs, and data interfaces like dataframes to show tables, session_state to track inventory, character advancement and experience, locations, file_uploader to allow the user to add images which are saved and referenced shown in gallery, camera_input to take character picture, on_change = function callbacks with continual running plots that change when you change data or click a button, randomness and word and letter rolls using emojis and st.markdown, st.expander for groupings and clusters of things, st.columns and other UI controls in streamlit as a game. Create inline data tables and list dictionaries for entities implemented as variables for the word game rule entities and stats. Design it as a fun data driven game app and show full python code listing for this ruleset and thematic story plot line: '
PromptPrefix3 = 'Create a HTML5 aframe and javascript app using appropriate libraries to create a body and brain health, medical, biological and knowledge outline featuring insights for medical and pharmacy professionals with advanced libraries like aframe to render 3d scenes creating moving entities that stay within a bounding box but show text and animation in 3d for inventory, components and story entities. Show full code listing. Add a list of new random entities say 3 of a few different types to any list appropriately and use emojis to make things easier and fun to read. Use appropriate emojis in labels. Create the UI to implement storytelling in the style of a dungeon master, with features using three emoji appropriate text plot twists and recurring interesting funny fascinating and complex almost poetic named characters with genius traits and file IO, randomness, ten point choice lists, math distribution tradeoffs, witty humorous dilemnas with emoji , rewards, variables, reusable functions with parameters, and data driven app with python libraries and streamlit components for Javascript and HTML5. Use appropriate emojis for labels to summarize and list parts, function, conditions for topic:'
# Function to display the entire glossary in a grid format with links
def display_glossary_grid(roleplaying_glossary):
search_urls = {
"📖": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
"🔍": lambda k: f"https://www.google.com/search?q={quote(k)}",
"▶️": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
"🔎": lambda k: f"https://www.bing.com/search?q={quote(k)}",
"🐦": lambda k: f"https://twitter.com/search?q={quote(k)}",
"🎲": lambda k: f"https://huggingface.co/spaces/awacke1/BodyMapAI?q={quote(k)}", # this url plus query!
"🃏": lambda k: f"https://huggingface.co/spaces/awacke1/BodyMapAI?q={quote(PromptPrefix)}{quote(k)}", # this url plus query!
"📚": lambda k: f"https://huggingface.co/spaces/awacke1/BodyMapAI?q={quote(PromptPrefix2)}{quote(k)}", # this url plus query!
"📚": lambda k: f"https://huggingface.co/spaces/awacke1/BodyMapAI?q={quote(PromptPrefix3)}{quote(k)}", # this url plus query!
}
for category, details in roleplaying_glossary.items():
st.write(f"### {category}")
cols = st.columns(len(details)) # Create dynamic columns based on the number of games
for idx, (game, terms) in enumerate(details.items()):
with cols[idx]:
st.markdown(f"#### {game}")
for term in terms:
links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()])
st.markdown(f"{term} {links_md}", unsafe_allow_html=True)
def display_glossary_entity(k):
search_urls = {
"📖": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
"🔍": lambda k: f"https://www.google.com/search?q={quote(k)}",
"▶️": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
"🔎": lambda k: f"https://www.bing.com/search?q={quote(k)}",
"🐦": lambda k: f"https://twitter.com/search?q={quote(k)}",
"🎲": lambda k: f"https://huggingface.co/spaces/awacke1/BodyMapAI?q={quote(k)}", # this url plus query!
"🃏": lambda k: f"https://huggingface.co/spaces/awacke1/BodyMapAI?q={quote(PromptPrefix)}{quote(k)}", # this url plus query!
"📚": lambda k: f"https://huggingface.co/spaces/awacke1/BodyMapAI?q={quote(PromptPrefix2)}{quote(k)}", # this url plus query!
"📚": lambda k: f"https://huggingface.co/spaces/awacke1/BodyMapAI?q={quote(PromptPrefix3)}{quote(k)}", # this url plus query!
}
links_md = ' '.join([f"[{emoji}]({url(k)})" for emoji, url in search_urls.items()])
st.markdown(f"{k} {links_md}", unsafe_allow_html=True)
# Function to display the entire glossary in a grid format with links
def display_glossary_grid_old(body_map_data):
search_urls = {
"📖": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
"🔍": lambda k: f"https://www.google.com/search?q={quote(k)}",
"▶️": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
"🔎": lambda k: f"https://www.bing.com/search?q={quote(k)}",
"🎲": lambda k: f"https://huggingface.co/spaces/awacke1/AI-ChatGPT-CPT-Body-Map-Cost?q={quote(k)}", # this url plus query!
}
for category, details in body_map_data.items():
st.write(f"### {category}")
cols = st.columns(len(details)) # Create dynamic columns based on the number of games
for idx, (game, terms) in enumerate(details.items()):
with cols[idx]:
st.markdown(f"#### {game}")
for term in terms:
links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()])
st.markdown(f"{term} {links_md}", unsafe_allow_html=True)
st.markdown('''### 🧠💪 BodyMapAI''')
with st.expander("Help / About 📚", expanded=False):
st.markdown('''Explore human anatomy with Body Map AI 🌐. Journey through organs & conditions, to gain insights & understanding.
- 🗺️ **Interactive Exploration:** Immersive human body map. Learn about organs' functions & secrets.
- 🩺 **Health Insights:** Understand health conditions, effects, & prevention.
- 🎓 **Educational Journey:** Ideal for students, educators, or anyone keen on anatomy.
- ✅ **Accessible Learning:** User-friendly interface for engaging anatomy education.
- 🔍 **Query Use:** Use URL query like `?q=Heart` for specific insights.
''')
# ---- Art Card Sidebar with Random Selection of image:
def get_image_as_base64(url):
response = requests.get(url)
if response.status_code == 200:
# Convert the image to base64
return base64.b64encode(response.content).decode("utf-8")
else:
return None
def create_download_link(filename, base64_str):
href = f'<a href="data:file/png;base64,{base64_str}" download="{filename}">Download Image</a>'
return href
image_urls = [
"https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/YZGOLf6fE1spAdyorCNGh.png",
"https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/qERawJvVM9P3s13tn5uHf.png",
"https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/DBOu6KKrd-f9TEqmFYS2t.png",
]
selected_image_url = random.choice(image_urls)
selected_image_base64 = get_image_as_base64(selected_image_url)
if selected_image_base64 is not None:
with st.sidebar:
st.markdown("""### Word Game AI""")
st.markdown(f"![image](data:image/png;base64,{selected_image_base64})")
else:
st.sidebar.write("Failed to load the image.")
# ---- Art Card Sidebar with random selection of image.
st.markdown('''### BodyMap Condition AI 🃏🚀📚''')
if st.checkbox('Show Anatomy Table'):
st.markdown("""
## Anatomy Head to Toe Table with Body Organs Costly Conditions, Spending, CPT Codes and Frequency
| Table Num | Body Part | Organ/Part | Description | 📈 Costly Condition | 💰 Spending (billions) | CPT Range Start | CPT Range Finish | Frequency |
|-----------|------------------|----------------------|-------------------------------|------------------------------|------------------------|-----------------|------------------|----------------|
| 1 | 🧠 Head | 🧠 Brain | Controls mental processes | 😨 Anxiety & Depression | 210 | 90791 | 90899 | 1 in 5 |
| 2 | 👀 Eyes | 👁️ Optic Nerve | Vision | 👓 Cataracts | 10.7 | 92002 | 92499 | 1 in 6 (over 40 years) |
| 3 | 👂 Ears | 🐚 Cochlea | Hearing | 📢 Hearing Loss | 7.1 | 92502 | 92700 | 1 in 8 (over 12 years) |
| 4 | 👃 Nose | 👃 Olfactory Bulb | Smell | 🤧 Allergies | 25 | 31231 | 31294 | 1 in 3 |
| 5 | 👄 Mouth | 👅 Tongue | Taste | 🦷 Dental Issues | 130 | 00100 | 00192 | 1 in 2 |
| 6 | 🫁 Neck | 🦋 Thyroid | Metabolism | 🦠 Hypothyroidism | 3.1 | 60210 | 60271 | 1 in 20 |
| 7 | 💪 Upper Body | ❤️ Heart | Circulation | 💔 Heart Disease | 230 | 92920 | 93799 | 1 in 4 (over 65 years) |
| 8 | 💪 Upper Body | 🫁 Lungs | Respiration | 😷 Chronic Obstructive Pulmonary Disease | 70 | 94002 | 94799 | 1 in 20 (over 45 years) |
| 9 | 💪 Upper Body | 🍷 Liver | Detoxification | 🍺 Liver Disease | 40 | 47000 | 47999 | 1 in 10 |
| 10 | 💪 Upper Body | 🍹 Kidneys | Filtration | 🌊 Chronic Kidney Disease | 110 | 50010 | 50999 | 1 in 7 |
| 11 | 💪 Upper Body | 💉 Pancreas | Insulin secretion | 🍬 Diabetes | 327 | 48100 | 48999 | 1 in 10 |
| 12 | 💪 Upper Body | 🍽️ Stomach | Digestion | 🔥 Gastroesophageal Reflux Disease | 17 | 43200 | 43289 | 1 in 5 |
| 13 | 💪 Upper Body | 🛡️ Spleen | Immune functions | 🩸 Anemia | 5.6 | 38100 | 38199 | 1 in 6 |
| 14 | 💪 Upper Body | 🫀 Blood Vessels | Circulation of blood | 🚑 Hypertension | 55 | 40110 | 40599 | 1 in 3 |
| 15 | 🦵 Lower Body | 🍝 Colon | Absorption of water, minerals | 🌟 Colorectal Cancer | 14 | 45378 | 45378 | 1 in 23 |
| 16 | 🦵 Lower Body | 🚽 Bladder | Urine excretion | 💧 Urinary Incontinence | 8 | 51700 | 51798 | 1 in 4 (over 65 years) |
| 17 | 🦵 Lower Body | 💞 Reproductive Organs | Sex hormone secretion | 🎗️ Endometriosis | 22 | 56405 | 58999 | 1 in 10 (women) |
| 18 | 🦶 Feet | 🎯 Nerve endings | Balance and movement | 🤕 Peripheral Neuropathy | 19 | 95900 | 96004 | 1 in 30 |
| 19 | 🦶 Feet | 🌡️ Skin | Temperature regulation | 🌞 Skin Cancer | 8.1 | 96910 | 96999 | 1 in 5 |
| 20 | 🦶 Feet | 💪 Muscles | Movement and strength | 🏋️♂️ Musculoskeletal Disorders | 176 | 97110 | 97799 | 1 in 2 |
""")
roleplaying_glossary = {
"🧠 Central Nervous System": {
"Brain": ["Cognitive functions", "Emotion regulation", "Neural coordination"],
"Spinal Cord": ["Nerve signal transmission", "Reflex actions", "Connects brain to body"],
},
"👀 Sensory Organs": {
"Eyes": ["Vision", "Light perception", "Color differentiation"],
"Ears": ["Hearing", "Balance maintenance", "Sound localization"],
"Nose": ["Smell detection", "Olfactory signaling", "Air filtration"],
"Tongue": ["Taste perception", "Texture sensing", "Temperature feeling"],
"Skin": ["Touch sensation", "Temperature regulation", "Protection against pathogens"],
},
"🫁 Respiratory System": {
"Lungs": ["Gas exchange", "Oxygen intake", "Carbon dioxide expulsion"],
"Trachea": ["Airway protection", "Mucus secretion", "Cough reflex"],
},
"❤️ Circulatory System": {
"Heart": ["Blood pumping", "Circulatory regulation", "Oxygen and nutrients distribution"],
"Blood Vessels": ["Blood transport", "Nutrient delivery", "Waste removal"],
},
"🍽️ Digestive System": {
"Stomach": ["Food breakdown", "Enzyme secretion", "Nutrient digestion"],
"Intestines": ["Nutrient absorption", "Waste processing", "Microbiome hosting"],
},
"💪 Musculoskeletal System": {
"Bones": ["Structural support", "Protection of organs", "Mineral storage"],
"Muscles": ["Movement facilitation", "Posture maintenance", "Heat production"],
},
"🚽 Excretory System": {
"Kidneys": ["Waste filtration", "Water balance", "Electrolyte regulation"],
"Bladder": ["Urine storage", "Excretion control", "Toxin removal"],
},
"💞 Endocrine System": {
"Thyroid": ["Metabolic regulation", "Hormone secretion", "Energy management"],
"Adrenal Glands": ["Stress response", "Metabolism control", "Immune system regulation"],
},
"🧬 Reproductive System": {
"Male Reproductive Organs": ["Sperm production", "Sexual function", "Hormone synthesis"],
"Female Reproductive Organs": ["Egg production", "Fetus gestation", "Hormone regulation"],
},
"🩸 Immune System": {
"White Blood Cells": ["Pathogen defense", "Infection response", "Immunity maintenance"],
"Lymphatic System": ["Fluid balance", "Waste removal", "Antibody production"],
},
"🧘 Integrative Body Functions": {
"Sleep Regulation": ["Rest and recovery", "Memory consolidation", "Energy conservation"],
"Stress Management": ["Coping mechanisms", "Hormonal balance", "Emotional regulation"],
},
"🔬 Research and Innovations": {
"Genetic Studies": ["Disease predisposition", "Trait inheritance", "Gene therapy"],
"Biomedical Engineering": ["Medical devices", "Prosthetics design", "Healthcare technologies"],
},
"🎓 Education and Awareness": {
"Anatomy and Physiology": ["Body structure", "Function understanding", "Health education"],
"Public Health Initiatives": ["Disease prevention", "Health promotion", "Community wellness"],
},
}
# Ensure the directory for storing scores exists
score_dir = "scores"
os.makedirs(score_dir, exist_ok=True)
# Function to generate a unique key for each button, including an emoji
def generate_key(label, header, idx):
return f"{header}_{label}_{idx}_key"
# Function to increment and save score
def update_score(key, increment=1):
score_file = os.path.join(score_dir, f"{key}.json")
if os.path.exists(score_file):
with open(score_file, "r") as file:
score_data = json.load(file)
else:
score_data = {"clicks": 0, "score": 0}
score_data["clicks"] += 1
score_data["score"] += increment
with open(score_file, "w") as file:
json.dump(score_data, file)
return score_data["score"]
# Function to load score
def load_score(key):
score_file = os.path.join(score_dir, f"{key}.json")
if os.path.exists(score_file):
with open(score_file, "r") as file:
score_data = json.load(file)
return score_data["score"]
return 0
def search_glossary(query):
for category, terms in roleplaying_glossary.items():
if query.lower() in (term.lower() for term in terms):
st.markdown(f"#### {category}")
st.write(f"- {query}")
all=""
query2 = PromptPrefix + query # Add prompt preface for method step task behavior
# st.write('## ' + query2)
st.write('## 🔍 Running with GPT.') # -------------------------------------------------------------------------------------------------
response = chat_with_model(query2)
filename = generate_filename(query2 + ' --- ' + response, "md")
create_file(filename, query, response, should_save)
query3 = PromptPrefix2 + query + ' creating streamlit functions that implement outline of method steps below: ' + response # Add prompt preface for coding task behavior
# st.write('## ' + query3)
st.write('## 🔍 Coding with GPT.') # -------------------------------------------------------------------------------------------------
response2 = chat_with_model(query3)
filename_txt = generate_filename(query + ' --- ' + response2, "py")
create_file(filename_txt, query, response2, should_save)
all = '# Query: ' + query + '# Response: ' + response + '# Response2: ' + response2
filename_txt2 = generate_filename(query + ' --- ' + all, "md")
create_file(filename_txt2, query, all, should_save)
SpeechSynthesis(all)
return all
# Function to display the glossary in a structured format
def display_glossary(glossary, area):
if area in glossary:
st.subheader(f"📘 Glossary for {area}")
for game, terms in glossary[area].items():
st.markdown(f"### {game}")
for idx, term in enumerate(terms, start=1):
st.write(f"{idx}. {term}")
game_emojis = {
"Dungeons and Dragons": "🐉",
"Call of Cthulhu": "🐙",
"GURPS": "🎲",
"Pathfinder": "🗺️",
"Kindred of the East": "🌅",
"Changeling": "🍃",
}
topic_emojis = {
"Core Rulebooks": "📚",
"Maps & Settings": "🗺️",
"Game Mechanics & Tools": "⚙️",
"Monsters & Adversaries": "👹",
"Campaigns & Adventures": "📜",
"Creatives & Assets": "🎨",
"Game Master Resources": "🛠️",
"Lore & Background": "📖",
"Character Development": "🧍",
"Homebrew Content": "🔧",
"General Topics": "🌍",
}
# Adjusted display_buttons_with_scores function
def display_buttons_with_scores():
for category, games in roleplaying_glossary.items():
category_emoji = topic_emojis.get(category, "🔍") # Default to search icon if no match
st.markdown(f"## {category_emoji} {category}")
for game, terms in games.items():
game_emoji = game_emojis.get(game, "🎮") # Default to generic game controller if no match
for term in terms:
key = f"{category}_{game}_{term}".replace(' ', '_').lower()
score = load_score(key)
if st.button(f"{game_emoji} {term} {score}", key=key):
update_score(key)
# Create a dynamic query incorporating emojis and formatting for clarity
query_prefix = f"{category_emoji} {game_emoji} **{game} - {category}:**"
# -----------------------------------------------------------------
# query_body = f"Create a detailed outline for **{term}** with subpoints highlighting key aspects, using emojis for visual engagement. Include step-by-step rules and boldface important entities and ruleset elements."
query_body = f"Create a streamlit python app.py that produces a detailed markdown outline and CSV dataset user interface with an outline for **{term}** with subpoints highlighting key aspects, using emojis for visual engagement. Include step-by-step rules and boldface important entities and ruleset elements."
response = search_glossary(query_prefix + query_body)
@st.cache_resource
def display_videos_and_links():
video_files = [f for f in os.listdir('.') if f.endswith('.mp4')]
if not video_files:
st.write("No MP4 videos found in the current directory.")
return
video_files_sorted = sorted(video_files, key=lambda x: len(x.split('.')[0]))
cols = st.columns(2) # Define 2 columns outside the loop
col_index = 0 # Initialize column index
for video_file in video_files_sorted:
with cols[col_index % 2]: # Use modulo 2 to alternate between the first and second column
# Embedding video with autoplay and loop using HTML
#video_html = ("""<video width="100%" loop autoplay> <source src="{video_file}" type="video/mp4">Your browser does not support the video tag.</video>""")
#st.markdown(video_html, unsafe_allow_html=True)
k = video_file.split('.')[0] # Assumes keyword is the file name without extension
st.video(video_file, format='video/mp4', start_time=0)
display_glossary_entity(k)
col_index += 1 # Increment column index to place the next video in the next column
@st.cache_resource
def display_images_and_wikipedia_summaries():
image_files = [f for f in os.listdir('.') if f.endswith('.png')]
if not image_files:
st.write("No PNG images found in the current directory.")
return
image_files_sorted = sorted(image_files, key=lambda x: len(x.split('.')[0]))
grid_sizes = [len(f.split('.')[0]) for f in image_files_sorted]
col_sizes = ['small' if size <= 4 else 'medium' if size <= 8 else 'large' for size in grid_sizes]
num_columns_map = {"small": 4, "medium": 3, "large": 2}
current_grid_size = 0
for image_file, col_size in zip(image_files_sorted, col_sizes):
if current_grid_size != num_columns_map[col_size]:
cols = st.columns(num_columns_map[col_size])
current_grid_size = num_columns_map[col_size]
col_index = 0
with cols[col_index % current_grid_size]:
image = Image.open(image_file)
st.image(image, caption=image_file, use_column_width=True)
k = image_file.split('.')[0] # Assumes keyword is the file name without extension
display_glossary_entity(k)
def get_all_query_params(key):
return st.query_params().get(key, [])
def clear_query_params():
st.query_params()
# Function to display content or image based on a query
def display_content_or_image(query):
# Check if the query matches any glossary term
for category, terms in roleplaying_glossary.items():
for term in terms:
if query.lower() in term.lower():
st.subheader(f"Found in {category}:")
st.write(term)
return True # Return after finding and displaying the first match
# Check for an image match in a predefined directory (adjust path as needed)
image_dir = "images" # Example directory where images are stored
image_path = f"{image_dir}/{query}.png" # Construct image path with query
if os.path.exists(image_path):
st.image(image_path, caption=f"Image for {query}")
return True
# If no content or image is found
st.warning("No matching content or image found.")
return False
# 1. Constants and Top Level UI Variables
# My Inference API Copy
API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud' # Dr Llama
# Meta's Original - Chat HF Free Version:
#API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf"
API_KEY = os.getenv('API_KEY')
MODEL1="meta-llama/Llama-2-7b-chat-hf"
MODEL1URL="https://huggingface.co/meta-llama/Llama-2-7b-chat-hf"
HF_KEY = os.getenv('HF_KEY')
headers = {
"Authorization": f"Bearer {HF_KEY}",
"Content-Type": "application/json"
}
key = os.getenv('OPENAI_API_KEY')
prompt = f"Write instructions to teach discharge planning along with guidelines and patient education. List entities, features and relationships to CCDA and FHIR objects in boldface."
should_save = st.sidebar.checkbox("💾 Save", value=True, help="Save your session data.")
def SpeechSynthesis(result):
documentHTML5='''
<!DOCTYPE html>
<html>
<head>
<title>Read It Aloud</title>
<script type="text/javascript">
function readAloud() {
const text = document.getElementById("textArea").value;
const speech = new SpeechSynthesisUtterance(text);
window.speechSynthesis.speak(speech);
}
</script>
</head>
<body>
<h1>🔊 Read It Aloud</h1>
<textarea id="textArea" rows="10" cols="80">
'''
documentHTML5 = documentHTML5 + result
documentHTML5 = documentHTML5 + '''
</textarea>
<br>
<button onclick="readAloud()">🔊 Read Aloud</button>
</body>
</html>
'''
components.html(documentHTML5, width=1280, height=300)
#return result
# 3. Stream Llama Response
# @st.cache_resource
def StreamLLMChatResponse(prompt):
try:
endpoint_url = API_URL
hf_token = API_KEY
st.write('Running client ' + endpoint_url)
client = InferenceClient(endpoint_url, token=hf_token)
gen_kwargs = dict(
max_new_tokens=512,
top_k=30,
top_p=0.9,
temperature=0.2,
repetition_penalty=1.02,
stop_sequences=["\nUser:", "<|endoftext|>", "</s>"],
)
stream = client.text_generation(prompt, stream=True, details=True, **gen_kwargs)
report=[]
res_box = st.empty()
collected_chunks=[]
collected_messages=[]
allresults=''
for r in stream:
if r.token.special:
continue
if r.token.text in gen_kwargs["stop_sequences"]:
break
collected_chunks.append(r.token.text)
chunk_message = r.token.text
collected_messages.append(chunk_message)
try:
report.append(r.token.text)
if len(r.token.text) > 0:
result="".join(report).strip()
res_box.markdown(f'*{result}*')
except:
st.write('Stream llm issue')
SpeechSynthesis(result)
return result
except:
st.write('Llama model is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).')
# 4. Run query with payload
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
st.markdown(response.json())
return response.json()
def get_output(prompt):
return query({"inputs": prompt})
# 5. Auto name generated output files from time and content
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:255] # 255 is linux max, 260 is windows max
#safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:45]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
# 6. Speech transcription via OpenAI service
def transcribe_audio(openai_key, file_path, model):
openai.api_key = openai_key
OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
headers = {
"Authorization": f"Bearer {openai_key}",
}
with open(file_path, 'rb') as f:
data = {'file': f}
st.write('STT transcript ' + OPENAI_API_URL)
response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
if response.status_code == 200:
st.write(response.json())
chatResponse = chat_with_model(response.json().get('text'), '') # *************************************
transcript = response.json().get('text')
filename = generate_filename(transcript, 'txt')
response = chatResponse
user_prompt = transcript
create_file(filename, user_prompt, response, should_save)
return transcript
else:
st.write(response.json())
st.error("Error in API call.")
return None
# 7. Auto stop on silence audio control for recording WAV files
def save_and_play_audio(audio_recorder):
audio_bytes = audio_recorder(key='audio_recorder')
if audio_bytes:
filename = generate_filename("Recording", "wav")
with open(filename, 'wb') as f:
f.write(audio_bytes)
st.audio(audio_bytes, format="audio/wav")
return filename
return None
# 8. File creator that interprets type and creates output file for text, markdown and code
def create_file(filename, prompt, response, should_save=True):
if not should_save:
return
base_filename, ext = os.path.splitext(filename)
if ext in ['.txt', '.htm', '.md']:
with open(f"{base_filename}.md", 'w') as file:
try:
content = prompt.strip() + '\r\n' + response
file.write(content)
except:
st.write('.')
#has_python_code = re.search(r"```python([\s\S]*?)```", prompt.strip() + '\r\n' + response)
#has_python_code = bool(re.search(r"```python([\s\S]*?)```", prompt.strip() + '\r\n' + response))
#if has_python_code:
# python_code = re.findall(r"```python([\s\S]*?)```", response)[0].strip()
# with open(f"{base_filename}-Code.py", 'w') as file:
# file.write(python_code)
# with open(f"{base_filename}.md", 'w') as file:
# content = prompt.strip() + '\r\n' + response
# file.write(content)
def truncate_document(document, length):
return document[:length]
def divide_document(document, max_length):
return [document[i:i+max_length] for i in range(0, len(document), max_length)]
# 9. Sidebar with UI controls to review and re-run prompts and continue responses
@st.cache_resource
def get_table_download_link(file_path):
with open(file_path, 'r') as file:
data = file.read()
b64 = base64.b64encode(data.encode()).decode()
file_name = os.path.basename(file_path)
ext = os.path.splitext(file_name)[1] # get the file extension
if ext == '.txt':
mime_type = 'text/plain'
elif ext == '.py':
mime_type = 'text/plain'
elif ext == '.xlsx':
mime_type = 'text/plain'
elif ext == '.csv':
mime_type = 'text/plain'
elif ext == '.htm':
mime_type = 'text/html'
elif ext == '.md':
mime_type = 'text/markdown'
elif ext == '.wav':
mime_type = 'audio/wav'
else:
mime_type = 'application/octet-stream' # general binary data type
href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
return href
def CompressXML(xml_text):
root = ET.fromstring(xml_text)
for elem in list(root.iter()):
if isinstance(elem.tag, str) and 'Comment' in elem.tag:
elem.parent.remove(elem)
return ET.tostring(root, encoding='unicode', method="xml")
# 10. Read in and provide UI for past files
@st.cache_resource
def read_file_content(file,max_length):
if file.type == "application/json":
content = json.load(file)
return str(content)
elif file.type == "text/html" or file.type == "text/htm":
content = BeautifulSoup(file, "html.parser")
return content.text
elif file.type == "application/xml" or file.type == "text/xml":
tree = ET.parse(file)
root = tree.getroot()
xml = CompressXML(ET.tostring(root, encoding='unicode'))
return xml
elif file.type == "text/markdown" or file.type == "text/md":
md = mistune.create_markdown()
content = md(file.read().decode())
return content
elif file.type == "text/plain":
return file.getvalue().decode()
else:
return ""
# 11. Chat with GPT - Caution on quota
@st.cache_resource
def chat_with_model(prompt, document_section='', model_choice='gpt-3.5-turbo'):
model = model_choice
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
conversation.append({'role': 'user', 'content': prompt})
if len(document_section)>0:
conversation.append({'role': 'assistant', 'content': document_section})
start_time = time.time()
report = []
res_box = st.empty()
collected_chunks = []
collected_messages = []
st.write('LLM stream ' + 'gpt-3.5-turbo')
for chunk in openai.ChatCompletion.create(model='gpt-3.5-turbo', messages=conversation, temperature=0.5, stream=True):
collected_chunks.append(chunk)
chunk_message = chunk['choices'][0]['delta']
collected_messages.append(chunk_message)
content=chunk["choices"][0].get("delta",{}).get("content")
try:
report.append(content)
if len(content) > 0:
result = "".join(report).strip()
res_box.markdown(f'*{result}*')
except:
st.write(' ')
full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
st.write("Elapsed time:")
st.write(time.time() - start_time)
return full_reply_content
def extract_mime_type(file):
if isinstance(file, str):
pattern = r"type='(.*?)'"
match = re.search(pattern, file)
if match:
return match.group(1)
else:
raise ValueError(f"Unable to extract MIME type from {file}")
elif isinstance(file, streamlit.UploadedFile):
return file.type
else:
raise TypeError("Input should be a string or a streamlit.UploadedFile object")
def extract_file_extension(file):
# get the file name directly from the UploadedFile object
file_name = file.name
pattern = r".*?\.(.*?)$"
match = re.search(pattern, file_name)
if match:
return match.group(1)
else:
raise ValueError(f"Unable to extract file extension from {file_name}")
# Normalize input as text from PDF and other formats
@st.cache_resource
def pdf2txt(docs):
text = ""
for file in docs:
file_extension = extract_file_extension(file)
st.write(f"File type extension: {file_extension}")
if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']:
text += file.getvalue().decode('utf-8')
elif file_extension.lower() == 'pdf':
from PyPDF2 import PdfReader
pdf = PdfReader(BytesIO(file.getvalue()))
for page in range(len(pdf.pages)):
text += pdf.pages[page].extract_text() # new PyPDF2 syntax
return text
def txt2chunks(text):
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
return text_splitter.split_text(text)
# Vector Store using FAISS
@st.cache_resource
def vector_store(text_chunks):
embeddings = OpenAIEmbeddings(openai_api_key=key)
return FAISS.from_texts(texts=text_chunks, embedding=embeddings)
# Memory and Retrieval chains
@st.cache_resource
def get_chain(vectorstore):
llm = ChatOpenAI()
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory)
def process_user_input(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
template = user_template if i % 2 == 0 else bot_template
st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
filename = generate_filename(user_question, 'txt')
response = message.content
user_prompt = user_question
create_file(filename, user_prompt, response, should_save)
def divide_prompt(prompt, max_length):
words = prompt.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
if len(word) + current_length <= max_length:
current_length += len(word) + 1
current_chunk.append(word)
else:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
current_length = len(word)
chunks.append(' '.join(current_chunk))
return chunks
# 13. Provide way of saving all and deleting all to give way of reviewing output and saving locally before clearing it
@st.cache_resource
def create_zip_of_files(files):
zip_name = "all_files.zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for file in files:
zipf.write(file)
return zip_name
@st.cache_resource
def get_zip_download_link(zip_file):
with open(zip_file, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
return href
# 14. Inference Endpoints for Whisper (best fastest STT) on NVIDIA T4 and Llama (best fastest AGI LLM) on NVIDIA A10
# My Inference Endpoint
API_URL_IE = f'https://tonpixzfvq3791u9.us-east-1.aws.endpoints.huggingface.cloud'
# Original
API_URL_IE = "https://api-inference.huggingface.co/models/openai/whisper-small.en"
MODEL2 = "openai/whisper-small.en"
MODEL2_URL = "https://huggingface.co/openai/whisper-small.en"
#headers = {
# "Authorization": "Bearer XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
# "Content-Type": "audio/wav"
#}
# HF_KEY = os.getenv('HF_KEY')
HF_KEY = st.secrets['HF_KEY']
headers = {
"Authorization": f"Bearer {HF_KEY}",
"Content-Type": "audio/wav"
}
#@st.cache_resource
def query(filename):
with open(filename, "rb") as f:
data = f.read()
response = requests.post(API_URL_IE, headers=headers, data=data)
return response.json()
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
# 15. Audio recorder to Wav file
def save_and_play_audio(audio_recorder):
audio_bytes = audio_recorder()
if audio_bytes:
filename = generate_filename("Recording", "wav")
with open(filename, 'wb') as f:
f.write(audio_bytes)
st.audio(audio_bytes, format="audio/wav")
return filename
# 16. Speech transcription to file output
def transcribe_audio(filename):
output = query(filename)
return output
def whisper_main():
#st.title("Speech to Text")
#st.write("Record your speech and get the text.")
# Audio, transcribe, GPT:
filename = save_and_play_audio(audio_recorder)
if filename is not None:
transcription = transcribe_audio(filename)
try:
transcript = transcription['text']
st.write(transcript)
except:
transcript=''
st.write(transcript)
# Whisper to GPT: New!! ---------------------------------------------------------------------
st.write('Reasoning with your inputs with GPT..')
response = chat_with_model(transcript)
st.write('Response:')
st.write(response)
filename = generate_filename(response, "txt")
create_file(filename, transcript, response, should_save)
# Whisper to GPT: New!! ---------------------------------------------------------------------
# Whisper to Llama:
# response = StreamLLMChatResponse(transcript)
#filename_txt = generate_filename(transcript, "md")
#create_file(filename_txt, transcript, response, should_save)
filename_wav = filename.replace('.txt', '.wav')
import shutil
try:
if os.path.exists(filename):
shutil.copyfile(filename, filename_wav)
except:
st.write('.')
if os.path.exists(filename):
os.remove(filename)
#st.experimental_rerun()
#except:
# st.write('Starting Whisper Model on GPU. Please retry in 30 seconds.')
# Sample function to demonstrate a response, replace with your own logic
def StreamMedChatResponse(topic):
st.write(f"Showing resources or questions related to: {topic}")
# 17. Main
def main():
prompt = f"Write ten funny jokes that are tweet length stories that make you laugh. Show as markdown outline with emojis for each."
# Add Wit and Humor buttons
# add_witty_humor_buttons()
# add_medical_exam_buttons()
with st.expander("Prompts 📚", expanded=False):
example_input = st.text_input("Enter your prompt text for Llama:", value=prompt, help="Enter text to get a response from DromeLlama.")
if st.button("Run Prompt With Llama model", help="Click to run the prompt."):
try:
response=StreamLLMChatResponse(example_input)
create_file(filename, example_input, response, should_save)
except:
st.write('Llama model is asleep. Starting now on A10 GPU. Please wait one minute then retry. KEDA triggered.')
openai.api_key = os.getenv('OPENAI_API_KEY')
if openai.api_key == None: openai.api_key = st.secrets['OPENAI_API_KEY']
menu = ["txt", "htm", "xlsx", "csv", "md", "py"]
choice = st.sidebar.selectbox("Output File Type:", menu)
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))
user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)
collength, colupload = st.columns([2,3]) # adjust the ratio as needed
with collength:
max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
with colupload:
uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"])
document_sections = deque()
document_responses = {}
if uploaded_file is not None:
file_content = read_file_content(uploaded_file, max_length)
document_sections.extend(divide_document(file_content, max_length))
if len(document_sections) > 0:
if st.button("👁️ View Upload"):
st.markdown("**Sections of the uploaded file:**")
for i, section in enumerate(list(document_sections)):
st.markdown(f"**Section {i+1}**\n{section}")
st.markdown("**Chat with the model:**")
for i, section in enumerate(list(document_sections)):
if i in document_responses:
st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
else:
if st.button(f"Chat about Section {i+1}"):
st.write('Reasoning with your inputs...')
#response = chat_with_model(user_prompt, section, model_choice)
st.write('Response:')
st.write(response)
document_responses[i] = response
filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
create_file(filename, user_prompt, response, should_save)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
if st.button('💬 Chat'):
st.write('Reasoning with your inputs...')
user_prompt_sections = divide_prompt(user_prompt, max_length)
full_response = ''
for prompt_section in user_prompt_sections:
response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice)
full_response += response + '\n' # Combine the responses
response = full_response
st.write('Response:')
st.write(response)
filename = generate_filename(user_prompt, choice)
create_file(filename, user_prompt, response, should_save)
# Compose a file sidebar of markdown md files:
all_files = glob.glob("*.md")
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10] # exclude files with short names
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order
if st.sidebar.button("🗑 Delete All Text"):
for file in all_files:
os.remove(file)
st.experimental_rerun()
if st.sidebar.button("⬇️ Download All"):
zip_file = create_zip_of_files(all_files)
st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
file_contents=''
next_action=''
for file in all_files:
col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1]) # adjust the ratio as needed
with col1:
if st.button("🌐", key="md_"+file): # md emoji button
with open(file, 'r') as f:
file_contents = f.read()
next_action='md'
with col2:
st.markdown(get_table_download_link(file), unsafe_allow_html=True)
with col3:
if st.button("📂", key="open_"+file): # open emoji button
with open(file, 'r') as f:
file_contents = f.read()
next_action='open'
with col4:
if st.button("🔍", key="read_"+file): # search emoji button
with open(file, 'r') as f:
file_contents = f.read()
next_action='search'
with col5:
if st.button("🗑", key="delete_"+file):
os.remove(file)
st.experimental_rerun()
if len(file_contents) > 0:
if next_action=='open':
file_content_area = st.text_area("File Contents:", file_contents, height=500)
if next_action=='md':
st.markdown(file_contents)
buttonlabel = '🔍Run with Llama and GPT.'
if st.button(key='RunWithLlamaandGPT', label = buttonlabel):
user_prompt = file_contents
# Llama versus GPT Battle!
all=""
# try:
#st.write('🔍Running with Llama.')
# response = StreamLLMChatResponse(file_contents)
#filename = generate_filename(user_prompt, "md")
# create_file(filename, file_contents, response, should_save)
#all=response
#SpeechSynthesis(response)
# except:
# st.markdown('Llama is sleeping. Restart ETA 30 seconds.')
# gpt
try:
st.write('🔍Running with GPT.')
response2 = chat_with_model(user_prompt, file_contents, model_choice)
filename2 = generate_filename(file_contents, choice)
create_file(filename2, user_prompt, response, should_save)
all=all+response2
#SpeechSynthesis(response2)
except:
st.markdown('GPT is sleeping. Restart ETA 30 seconds.')
SpeechSynthesis(all)
if next_action=='search':
file_content_area = st.text_area("File Contents:", file_contents, height=500)
st.write('🔍Running with Llama and GPT.')
user_prompt = file_contents
# Llama versus GPT Battle!
all=""
try:
st.write('🔍Running with Llama.')
response = StreamLLMChatResponse(file_contents)
filename = generate_filename(user_prompt, ".md")
create_file(filename, file_contents, response, should_save)
all=response
#SpeechSynthesis(response)
except:
st.markdown('Llama is sleeping. Restart ETA 30 seconds.')
# gpt
try:
st.write('🔍Running with GPT.')
response2 = chat_with_model(user_prompt, file_contents, model_choice)
filename2 = generate_filename(file_contents, choice)
create_file(filename2, user_prompt, response, should_save)
all=all+response2
#SpeechSynthesis(response2)
except:
st.markdown('GPT is sleeping. Restart ETA 30 seconds.')
SpeechSynthesis(all)
# Function to encode file to base64
def get_base64_encoded_file(file_path):
with open(file_path, "rb") as file:
return base64.b64encode(file.read()).decode()
# Function to create a download link
def get_audio_download_link(file_path):
base64_file = get_base64_encoded_file(file_path)
return f'<a href="data:file/wav;base64,{base64_file}" download="{os.path.basename(file_path)}">⬇️ Download Audio</a>'
# Compose a file sidebar of past encounters
all_files = glob.glob("*.wav")
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10] # exclude files with short names
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order
filekey = 'delall'
if st.sidebar.button("🗑 Delete All Audio", key=filekey):
for file in all_files:
os.remove(file)
st.experimental_rerun()
for file in all_files:
col1, col2 = st.sidebar.columns([6, 1]) # adjust the ratio as needed
with col1:
st.markdown(file)
if st.button("🎵", key="play_" + file): # play emoji button
audio_file = open(file, 'rb')
audio_bytes = audio_file.read()
st.audio(audio_bytes, format='audio/wav')
#st.markdown(get_audio_download_link(file), unsafe_allow_html=True)
#st.text_input(label="", value=file)
with col2:
if st.button("🗑", key="delete_" + file):
os.remove(file)
st.experimental_rerun()
# Feedback
# Step: Give User a Way to Upvote or Downvote
GiveFeedback=False
if GiveFeedback:
with st.expander("Give your feedback 👍", expanded=False):
feedback = st.radio("Step 8: Give your feedback", ("👍 Upvote", "👎 Downvote"))
if feedback == "👍 Upvote":
st.write("You upvoted 👍. Thank you for your feedback!")
else:
st.write("You downvoted 👎. Thank you for your feedback!")
load_dotenv()
st.write(css, unsafe_allow_html=True)
st.header("Chat with documents :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
process_user_input(user_question)
with st.sidebar:
st.subheader("Your documents")
docs = st.file_uploader("import documents", accept_multiple_files=True)
with st.spinner("Processing"):
raw = pdf2txt(docs)
if len(raw) > 0:
length = str(len(raw))
text_chunks = txt2chunks(raw)
vectorstore = vector_store(text_chunks)
st.session_state.conversation = get_chain(vectorstore)
st.markdown('# AI Search Index of Length:' + length + ' Created.') # add timing
filename = generate_filename(raw, 'txt')
create_file(filename, raw, '', should_save)
# Relocated! Hope you like your new space - enjoy!
# Display instructions and handle query parameters
#st.markdown("## Glossary Lookup\nEnter a term in the URL query, like `?q=Body Scan` or `?query=Body Map`.")
try:
query_params = st.query_params
query = (query_params.get('q') or query_params.get('query') or [''])
st.markdown('# Running query: ' + query)
if query: search_glossary(query)
except:
st.markdown(' ')
st.title("🎲🗺️ Body Map Conditions")
#st.markdown("## Explore the body with a body scan map which fosters self knowledge about the body.🌠")
#st.title("Body Map Glossary 🎲")
# Display the glossary grid
display_videos_and_links() # Video Jump Grid
display_images_and_wikipedia_summaries()
display_glossary_grid(roleplaying_glossary)
display_buttons_with_scores()
# Example: Using query parameters to navigate or trigger functionalities
if 'action' in st.query_params:
action = st.query_params()['action'][0] # Get the first (or only) 'action' parameter
if action == 'show_message':
st.success("Showing a message because 'action=show_message' was found in the URL.")
elif action == 'clear':
clear_query_params()
st.experimental_rerun()
# Handling repeated keys
if 'multi' in st.query_params:
multi_values = get_all_query_params('multi')
st.write("Values for 'multi':", multi_values)
# Manual entry for demonstration
st.write("Enter query parameters in the URL like this: ?action=show_message&multi=1&multi=2")
if 'query' in st.query_params:
query = st.query_params['query'][0] # Get the query parameter
# Display content or image based on the query
display_content_or_image(query)
# Add a clear query parameters button for convenience
if st.button("Clear Query Parameters", key='ClearQueryParams'):
# This will clear the browser URL's query parameters
st.experimental_set_query_params
st.experimental_rerun()
# 18. Run AI Pipeline
if __name__ == "__main__":
whisper_main()
main() |