File size: 58,284 Bytes
93bff19
e8cf46e
93bff19
d8ff977
e8cf46e
bc28acb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8cf46e
bc28acb
e8cf46e
 
bc28acb
a857b87
ece76b0
55d7401
78b5c6a
 
55d7401
 
 
753f915
78b5c6a
8e773c7
55d7401
 
f50ae47
6327870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54c106b
 
 
 
6327870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54c106b
 
 
 
6327870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f50ae47
72ce293
 
b0984b8
72ce293
 
 
 
 
 
f50ae47
194c9bb
 
 
b4b2bd3
 
 
 
 
 
 
 
 
 
194c9bb
 
 
 
 
 
 
 
b4b2bd3
194c9bb
 
b4b2bd3
 
194c9bb
5b3dda4
194c9bb
545b55b
 
 
bc28acb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dc1da5
bc28acb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ece76b0
8166716
 
 
ece76b0
8166716
ece76b0
8166716
ece76b0
8166716
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7715ea
76cca73
d239526
f50ae47
 
 
693209f
0f3fdad
d239526
 
 
44d6790
d239526
 
44d6790
0f3fdad
88f5796
d239526
 
 
 
44d6790
d239526
0f3fdad
44d6790
 
0f3fdad
 
76cca73
693209f
 
 
 
 
 
 
 
 
 
df6e848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ae4abe
df6e848
 
 
 
 
 
 
 
 
 
 
7efa938
 
 
ddb8834
fd62e11
5b3dda4
9b796f0
6327870
 
 
 
 
 
 
 
9b796f0
6327870
 
9b796f0
6327870
 
 
 
 
 
 
 
 
13af9c2
6327870
9b796f0
 
 
 
 
6327870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b796f0
 
 
 
 
 
 
bd031a7
9b796f0
 
 
 
4dc1da5
9b796f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f504bcb
9b796f0
263e41a
 
 
 
 
 
 
76a257f
263e41a
76a257f
263e41a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc28acb
263e41a
717f278
263e41a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e07e606
 
 
 
 
 
 
3c2f20e
717f278
 
 
 
 
 
b1ea756
 
717f278
 
 
 
 
04a29c5
 
 
b1ea756
04a29c5
717f278
e07e606
b1ea756
 
e07e606
b1ea756
 
717f278
 
 
b1ea756
717f278
 
263e41a
 
 
 
 
 
 
 
 
 
 
 
 
18298aa
263e41a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c2f20e
 
263e41a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04a29c5
 
 
 
 
 
263e41a
04a29c5
 
263e41a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0a37a4
 
 
83d0e33
e0a37a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83d0e33
 
 
a48447d
545b55b
5a40927
8b1291e
 
7cf7472
6fb608b
8b1291e
 
6327870
 
 
 
 
8b1291e
83d0e33
6327870
c572d3b
9ab19c0
83d0e33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
263e41a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
import streamlit as st
import streamlit.components.v1 as components
import os
import json
import random
import base64
import glob
import math
import openai
import pytz
import re
import requests
import textract
import time
import zipfile
import huggingface_hub
import dotenv
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import deque
from datetime import datetime
from dotenv import load_dotenv
from huggingface_hub import InferenceClient
from io import BytesIO
from openai import ChatCompletion
from PyPDF2 import PdfReader
from templates import bot_template, css, user_template
from xml.etree import ElementTree as ET
from PIL import Image
from urllib.parse import quote  # Ensure this import is included


# Set page configuration with a title and favicon
st.set_page_config(
    page_title="🧠💪 Body Map AI",
    page_icon="💪🧠",
    layout="wide",
    initial_sidebar_state="expanded",
    menu_items={
        'Get Help': 'https://huggingface.co/awacke1',
        'Report a bug': "https://huggingface.co/spaces/awacke1",
        'About': "Body Map AI By Aaron Wacker - https://huggingface.co/awacke1"
    }
)

#PromptPrefix = 'Create a markdown outline and table with appropriate emojis for body map which define the definition parts, function, conditions of the topic of '
#PromptPrefix2 = 'Create a streamlit python user app.  Show full code listing.  Create a UI implementing each feature using variables, reusable functions with parameters, and data driven app with python libraries and streamlit components for Javascript and HTML5. Use appropriate emojis for labels to summarize and list parts, function, conditions for topic: '

# Prompts for App, for App Product, and App Product Code
PromptPrefix = 'Create a body and brain health, medical, biological and knowledge outline featuring insights for medical and pharmacy professionals with streamlit markdown outlines and tables with appropriate emojis for methodical step by step rules defining the game play rules.  Use story structure architect rules to plan, structure and write three dramatic situations to include in the word game rules matching the theme for topic of '
PromptPrefix2 = 'Create a streamlit python app with full code listing to create a UI implementing the plans, structure, situations and tables as python functions creating a body and brain health, medical, biological and knowledge outline featuring insights for medical and pharmacy professionals using streamlit to create user interface elements like emoji buttons, sliders, drop downs, and data interfaces like dataframes to show tables, session_state to track inventory, character advancement and experience, locations, file_uploader to allow the user to add images which are saved and referenced shown in gallery, camera_input to take character picture, on_change = function callbacks with continual running plots that change when you change data or click a button, randomness and word and letter rolls using emojis and st.markdown, st.expander for groupings and clusters of things, st.columns and other UI controls in streamlit as a game. Create inline data tables and list dictionaries for entities implemented as variables for the word game rule entities and stats.  Design it as a fun data driven game app and show full python code listing for this ruleset and thematic story plot line: '
PromptPrefix3 = 'Create a HTML5 aframe and javascript app using appropriate libraries to create a body and brain health, medical, biological and knowledge outline  featuring insights for medical and pharmacy professionals with advanced libraries like aframe to render 3d scenes creating moving entities that stay within a bounding box but show text and animation in 3d for inventory, components and story entities.  Show full code listing.  Add a list of new random entities say 3 of a few different types to any list appropriately and use emojis to make things easier and fun to read.  Use appropriate emojis in labels.  Create the UI to implement storytelling in the style of a dungeon master, with features using three emoji appropriate text plot twists and recurring interesting funny fascinating and complex almost poetic named characters with genius traits and file IO, randomness, ten point choice lists, math distribution tradeoffs, witty humorous dilemnas with emoji , rewards, variables, reusable functions with parameters, and data driven app with python libraries and streamlit components for Javascript and HTML5. Use appropriate emojis for labels to summarize and list parts, function, conditions for topic:'



# Function to display the entire glossary in a grid format with links
def display_glossary_grid(roleplaying_glossary):
    search_urls = {
        "📖": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
        "🔍": lambda k: f"https://www.google.com/search?q={quote(k)}",
        "▶️": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
        "🔎": lambda k: f"https://www.bing.com/search?q={quote(k)}",
        "🐦": lambda k: f"https://twitter.com/search?q={quote(k)}",
        "🎲": lambda k: f"https://huggingface.co/spaces/awacke1/BodyMapAI?q={quote(k)}",  # this url plus query!
        "🃏": lambda k: f"https://huggingface.co/spaces/awacke1/BodyMapAI?q={quote(PromptPrefix)}{quote(k)}",  # this url plus query!
        "📚": lambda k: f"https://huggingface.co/spaces/awacke1/BodyMapAI?q={quote(PromptPrefix2)}{quote(k)}",  # this url plus query!
        "📚": lambda k: f"https://huggingface.co/spaces/awacke1/BodyMapAI?q={quote(PromptPrefix3)}{quote(k)}",  # this url plus query!
    }

    for category, details in roleplaying_glossary.items():
        st.write(f"### {category}")
        cols = st.columns(len(details))  # Create dynamic columns based on the number of games
        for idx, (game, terms) in enumerate(details.items()):
            with cols[idx]:
                st.markdown(f"#### {game}")
                for term in terms:
                    links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()])
                    st.markdown(f"{term} {links_md}", unsafe_allow_html=True)

def display_glossary_entity(k):
    search_urls = {
        "📖": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
        "🔍": lambda k: f"https://www.google.com/search?q={quote(k)}",
        "▶️": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
        "🔎": lambda k: f"https://www.bing.com/search?q={quote(k)}",
        "🐦": lambda k: f"https://twitter.com/search?q={quote(k)}",
        "🎲": lambda k: f"https://huggingface.co/spaces/awacke1/BodyMapAI?q={quote(k)}",  # this url plus query!
        "🃏": lambda k: f"https://huggingface.co/spaces/awacke1/BodyMapAI?q={quote(PromptPrefix)}{quote(k)}",  # this url plus query!
        "📚": lambda k: f"https://huggingface.co/spaces/awacke1/BodyMapAI?q={quote(PromptPrefix2)}{quote(k)}",  # this url plus query!
        "📚": lambda k: f"https://huggingface.co/spaces/awacke1/BodyMapAI?q={quote(PromptPrefix3)}{quote(k)}",  # this url plus query!
    }
    links_md = ' '.join([f"[{emoji}]({url(k)})" for emoji, url in search_urls.items()])
    st.markdown(f"{k} {links_md}", unsafe_allow_html=True)




# Function to display the entire glossary in a grid format with links
def display_glossary_grid_old(body_map_data):
    search_urls = {
        "📖": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
        "🔍": lambda k: f"https://www.google.com/search?q={quote(k)}",
        "▶️": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
        "🔎": lambda k: f"https://www.bing.com/search?q={quote(k)}",
        "🎲": lambda k: f"https://huggingface.co/spaces/awacke1/AI-ChatGPT-CPT-Body-Map-Cost?q={quote(k)}",  # this url plus query!
        
    }

    for category, details in body_map_data.items():
        st.write(f"### {category}")
        cols = st.columns(len(details))  # Create dynamic columns based on the number of games
        for idx, (game, terms) in enumerate(details.items()):
            with cols[idx]:
                st.markdown(f"#### {game}")
                for term in terms:
                    links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()])
                    st.markdown(f"{term} {links_md}", unsafe_allow_html=True)




st.markdown('''### 🧠💪 BodyMapAI''')
with st.expander("Help / About 📚", expanded=False):
    st.markdown('''Explore human anatomy with Body Map AI 🌐. Journey through organs & conditions, to gain insights & understanding.
    - 🗺️ **Interactive Exploration:** Immersive human body map. Learn about organs' functions & secrets.
    - 🩺 **Health Insights:** Understand health conditions, effects, & prevention.
    - 🎓 **Educational Journey:** Ideal for students, educators, or anyone keen on anatomy.
    - ✅ **Accessible Learning:** User-friendly interface for engaging anatomy education.
    - 🔍 **Query Use:** Use URL query like `?q=Heart` for specific insights.
    ''')



# ---- Art Card Sidebar with Random Selection of image:
def get_image_as_base64(url):
    response = requests.get(url)
    if response.status_code == 200:
        # Convert the image to base64
        return base64.b64encode(response.content).decode("utf-8")
    else:
        return None
def create_download_link(filename, base64_str):
    href = f'<a href="data:file/png;base64,{base64_str}" download="{filename}">Download Image</a>'
    return href
image_urls = [
    "https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/YZGOLf6fE1spAdyorCNGh.png",
    "https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/qERawJvVM9P3s13tn5uHf.png",
    "https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/DBOu6KKrd-f9TEqmFYS2t.png",
]
selected_image_url = random.choice(image_urls)
selected_image_base64 = get_image_as_base64(selected_image_url)
if selected_image_base64 is not None:
    with st.sidebar:
        st.markdown("""### Word Game AI""")
        st.markdown(f"![image](data:image/png;base64,{selected_image_base64})")
else:
    st.sidebar.write("Failed to load the image.")
# ---- Art Card Sidebar with random selection of image.

    
                    
st.markdown('''### BodyMap Condition AI 🃏🚀📚''')

if st.checkbox('Show Anatomy Table'):
    st.markdown("""
    ## Anatomy Head to Toe Table with Body Organs Costly Conditions, Spending, CPT Codes and Frequency
    
    | Table Num | Body Part        | Organ/Part           | Description                   | 📈 Costly Condition          | 💰 Spending (billions) | CPT Range Start | CPT Range Finish | Frequency      |
    |-----------|------------------|----------------------|-------------------------------|------------------------------|------------------------|-----------------|------------------|----------------|
    | 1         | 🧠 Head          | 🧠 Brain             | Controls mental processes     | 😨 Anxiety & Depression      | 210                    | 90791           | 90899            | 1 in 5         |
    | 2         | 👀 Eyes          | 👁️ Optic Nerve      | Vision                        | 👓 Cataracts                 | 10.7                   | 92002           | 92499            | 1 in 6 (over 40 years) |
    | 3         | 👂 Ears          | 🐚 Cochlea           | Hearing                       | 📢 Hearing Loss              | 7.1                    | 92502           | 92700            | 1 in 8 (over 12 years) |
    | 4         | 👃 Nose          | 👃 Olfactory Bulb    | Smell                         | 🤧 Allergies                 | 25                     | 31231           | 31294            | 1 in 3         |
    | 5         | 👄 Mouth         | 👅 Tongue            | Taste                         | 🦷 Dental Issues             | 130                    | 00100           | 00192            | 1 in 2         |
    | 6         | 🫁 Neck          | 🦋 Thyroid           | Metabolism                    | 🦠 Hypothyroidism            | 3.1                    | 60210           | 60271            | 1 in 20        |
    | 7         | 💪 Upper Body    | ❤️ Heart             | Circulation                   | 💔 Heart Disease             | 230                    | 92920           | 93799            | 1 in 4 (over 65 years) |
    | 8         | 💪 Upper Body    | 🫁 Lungs             | Respiration                   | 😷 Chronic Obstructive Pulmonary Disease | 70   | 94002           | 94799            | 1 in 20 (over 45 years) |
    | 9         | 💪 Upper Body    | 🍷 Liver             | Detoxification                | 🍺 Liver Disease             | 40                     | 47000           | 47999            | 1 in 10        |
    | 10        | 💪 Upper Body    | 🍹 Kidneys           | Filtration                    | 🌊 Chronic Kidney Disease    | 110                    | 50010           | 50999            | 1 in 7         |
    | 11        | 💪 Upper Body    | 💉 Pancreas          | Insulin secretion             | 🍬 Diabetes                  | 327                    | 48100           | 48999            | 1 in 10        |
    | 12        | 💪 Upper Body    | 🍽️ Stomach          | Digestion                     | 🔥 Gastroesophageal Reflux Disease | 17          | 43200           | 43289            | 1 in 5         |
    | 13        | 💪 Upper Body    | 🛡️ Spleen            | Immune functions              | 🩸 Anemia                    | 5.6                    | 38100           | 38199            | 1 in 6         |
    | 14        | 💪 Upper Body    | 🫀 Blood Vessels     | Circulation of blood          | 🚑 Hypertension              | 55                     | 40110           | 40599            | 1 in 3         |
    | 15        | 🦵 Lower Body    | 🍝 Colon             | Absorption of water, minerals | 🌟 Colorectal Cancer         | 14                     | 45378           | 45378            | 1 in 23        |
    | 16        | 🦵 Lower Body    | 🚽 Bladder           | Urine excretion               | 💧 Urinary Incontinence      | 8                      | 51700           | 51798            | 1 in 4 (over 65 years) |
    | 17        | 🦵 Lower Body    | 💞 Reproductive Organs | Sex hormone secretion        | 🎗️ Endometriosis            | 22                     | 56405           | 58999            | 1 in 10 (women) |
    | 18        | 🦶 Feet          | 🎯 Nerve endings      | Balance and movement          | 🤕 Peripheral Neuropathy     | 19                     | 95900           | 96004            | 1 in 30        |
    | 19        | 🦶 Feet          | 🌡️ Skin              | Temperature regulation        | 🌞 Skin Cancer               | 8.1                    | 96910           | 96999            | 1 in 5         |
    | 20        | 🦶 Feet          | 💪 Muscles           | Movement and strength         | 🏋️‍♂️ Musculoskeletal Disorders | 176              | 97110           | 97799            | 1 in 2         |
    
    """)

roleplaying_glossary = {
    "🧠 Central Nervous System": {
        "Brain": ["Cognitive functions", "Emotion regulation", "Neural coordination"],
        "Spinal Cord": ["Nerve signal transmission", "Reflex actions", "Connects brain to body"],
    },
    "👀 Sensory Organs": {
        "Eyes": ["Vision", "Light perception", "Color differentiation"],
        "Ears": ["Hearing", "Balance maintenance", "Sound localization"],
        "Nose": ["Smell detection", "Olfactory signaling", "Air filtration"],
        "Tongue": ["Taste perception", "Texture sensing", "Temperature feeling"],
        "Skin": ["Touch sensation", "Temperature regulation", "Protection against pathogens"],
    },
    "🫁 Respiratory System": {
        "Lungs": ["Gas exchange", "Oxygen intake", "Carbon dioxide expulsion"],
        "Trachea": ["Airway protection", "Mucus secretion", "Cough reflex"],
    },
    "❤️ Circulatory System": {
        "Heart": ["Blood pumping", "Circulatory regulation", "Oxygen and nutrients distribution"],
        "Blood Vessels": ["Blood transport", "Nutrient delivery", "Waste removal"],
    },
    "🍽️ Digestive System": {
        "Stomach": ["Food breakdown", "Enzyme secretion", "Nutrient digestion"],
        "Intestines": ["Nutrient absorption", "Waste processing", "Microbiome hosting"],
    },
    "💪 Musculoskeletal System": {
        "Bones": ["Structural support", "Protection of organs", "Mineral storage"],
        "Muscles": ["Movement facilitation", "Posture maintenance", "Heat production"],
    },
    "🚽 Excretory System": {
        "Kidneys": ["Waste filtration", "Water balance", "Electrolyte regulation"],
        "Bladder": ["Urine storage", "Excretion control", "Toxin removal"],
    },
    "💞 Endocrine System": {
        "Thyroid": ["Metabolic regulation", "Hormone secretion", "Energy management"],
        "Adrenal Glands": ["Stress response", "Metabolism control", "Immune system regulation"],
    },
    "🧬 Reproductive System": {
        "Male Reproductive Organs": ["Sperm production", "Sexual function", "Hormone synthesis"],
        "Female Reproductive Organs": ["Egg production", "Fetus gestation", "Hormone regulation"],
    },
    "🩸 Immune System": {
        "White Blood Cells": ["Pathogen defense", "Infection response", "Immunity maintenance"],
        "Lymphatic System": ["Fluid balance", "Waste removal", "Antibody production"],
    },
    "🧘 Integrative Body Functions": {
        "Sleep Regulation": ["Rest and recovery", "Memory consolidation", "Energy conservation"],
        "Stress Management": ["Coping mechanisms", "Hormonal balance", "Emotional regulation"],
    },
    "🔬 Research and Innovations": {
        "Genetic Studies": ["Disease predisposition", "Trait inheritance", "Gene therapy"],
        "Biomedical Engineering": ["Medical devices", "Prosthetics design", "Healthcare technologies"],
    },
    "🎓 Education and Awareness": {
        "Anatomy and Physiology": ["Body structure", "Function understanding", "Health education"],
        "Public Health Initiatives": ["Disease prevention", "Health promotion", "Community wellness"],
    },
}



# Ensure the directory for storing scores exists
score_dir = "scores"
os.makedirs(score_dir, exist_ok=True)

# Function to generate a unique key for each button, including an emoji
def generate_key(label, header, idx):
    return f"{header}_{label}_{idx}_key"

# Function to increment and save score
def update_score(key, increment=1):
    score_file = os.path.join(score_dir, f"{key}.json")
    if os.path.exists(score_file):
        with open(score_file, "r") as file:
            score_data = json.load(file)
    else:
        score_data = {"clicks": 0, "score": 0}
    
    score_data["clicks"] += 1
    score_data["score"] += increment
    
    with open(score_file, "w") as file:
        json.dump(score_data, file)
    
    return score_data["score"]

# Function to load score
def load_score(key):
    score_file = os.path.join(score_dir, f"{key}.json")
    if os.path.exists(score_file):
        with open(score_file, "r") as file:
            score_data = json.load(file)
        return score_data["score"]
    return 0


def search_glossary(query):
    for category, terms in roleplaying_glossary.items():
        if query.lower() in (term.lower() for term in terms):
            st.markdown(f"#### {category}")
            st.write(f"- {query}")

    all=""

    query2 = PromptPrefix + query # Add prompt preface for method step task behavior
    # st.write('## ' + query2)
    st.write('## 🔍 Running with GPT.')  #  -------------------------------------------------------------------------------------------------
    response = chat_with_model(query2)    
    filename = generate_filename(query2 + ' --- ' + response, "md")
    create_file(filename, query, response, should_save)
    
    query3 = PromptPrefix2 + query + ' creating streamlit functions that implement outline of method steps below: ' + response # Add prompt preface for coding task behavior
    # st.write('## ' + query3)
    st.write('## 🔍 Coding with GPT.')  #  -------------------------------------------------------------------------------------------------
    response2 = chat_with_model(query3)
    filename_txt = generate_filename(query + ' --- ' + response2, "py")
    create_file(filename_txt, query, response2, should_save)
    
    all = '# Query: ' + query + '# Response: ' + response + '# Response2: ' + response2
    filename_txt2 = generate_filename(query + ' --- ' + all, "md")
    create_file(filename_txt2, query, all, should_save)
    SpeechSynthesis(all)
    return all
    
# Function to display the glossary in a structured format
def display_glossary(glossary, area):
    if area in glossary:
        st.subheader(f"📘 Glossary for {area}")
        for game, terms in glossary[area].items():
            st.markdown(f"### {game}")
            for idx, term in enumerate(terms, start=1):
                st.write(f"{idx}. {term}")


game_emojis = {
    "Dungeons and Dragons": "🐉",
    "Call of Cthulhu": "🐙",
    "GURPS": "🎲",
    "Pathfinder": "🗺️",
    "Kindred of the East": "🌅",
    "Changeling": "🍃",
}

topic_emojis = {
    "Core Rulebooks": "📚",
    "Maps & Settings": "🗺️",
    "Game Mechanics & Tools": "⚙️",
    "Monsters & Adversaries": "👹",
    "Campaigns & Adventures": "📜",
    "Creatives & Assets": "🎨",
    "Game Master Resources": "🛠️",
    "Lore & Background": "📖",
    "Character Development": "🧍",
    "Homebrew Content": "🔧",
    "General Topics": "🌍",
}

# Adjusted display_buttons_with_scores function
def display_buttons_with_scores():
    for category, games in roleplaying_glossary.items():
        category_emoji = topic_emojis.get(category, "🔍")  # Default to search icon if no match
        st.markdown(f"## {category_emoji} {category}")
        for game, terms in games.items():
            game_emoji = game_emojis.get(game, "🎮")  # Default to generic game controller if no match
            for term in terms:
                key = f"{category}_{game}_{term}".replace(' ', '_').lower()
                score = load_score(key)
                if st.button(f"{game_emoji} {term} {score}", key=key):
                    update_score(key)
                    # Create a dynamic query incorporating emojis and formatting for clarity
                    query_prefix = f"{category_emoji} {game_emoji} **{game} - {category}:**"
                    # -----------------------------------------------------------------
                    # query_body = f"Create a detailed outline for **{term}** with subpoints highlighting key aspects, using emojis for visual engagement. Include step-by-step rules and boldface important entities and ruleset elements."
                    query_body = f"Create a streamlit python app.py that produces a detailed markdown outline and CSV dataset user interface with an outline for **{term}** with subpoints highlighting key aspects, using emojis for visual engagement. Include step-by-step rules and boldface important entities and ruleset elements."
                    response = search_glossary(query_prefix + query_body)



@st.cache_resource
def display_videos_and_links():
    video_files = [f for f in os.listdir('.') if f.endswith('.mp4')]
    if not video_files:
        st.write("No MP4 videos found in the current directory.")
        return
    
    video_files_sorted = sorted(video_files, key=lambda x: len(x.split('.')[0]))

    cols = st.columns(2)  # Define 2 columns outside the loop
    col_index = 0  # Initialize column index

    for video_file in video_files_sorted:
        with cols[col_index % 2]:  # Use modulo 2 to alternate between the first and second column
            # Embedding video with autoplay and loop using HTML
            #video_html = ("""<video width="100%" loop autoplay>   <source src="{video_file}" type="video/mp4">Your browser does not support the video tag.</video>""")
            #st.markdown(video_html, unsafe_allow_html=True)
            k = video_file.split('.')[0]  # Assumes keyword is the file name without extension
            st.video(video_file, format='video/mp4', start_time=0)
            display_glossary_entity(k)  
        col_index += 1  # Increment column index to place the next video in the next column

@st.cache_resource
def display_images_and_wikipedia_summaries():
    image_files = [f for f in os.listdir('.') if f.endswith('.png')]
    if not image_files:
        st.write("No PNG images found in the current directory.")
        return
    image_files_sorted = sorted(image_files, key=lambda x: len(x.split('.')[0]))
    grid_sizes = [len(f.split('.')[0]) for f in image_files_sorted]
    col_sizes = ['small' if size <= 4 else 'medium' if size <= 8 else 'large' for size in grid_sizes]
    num_columns_map = {"small": 4, "medium": 3, "large": 2}
    current_grid_size = 0
    for image_file, col_size in zip(image_files_sorted, col_sizes):
        if current_grid_size != num_columns_map[col_size]:
            cols = st.columns(num_columns_map[col_size])
            current_grid_size = num_columns_map[col_size]
            col_index = 0
            with cols[col_index % current_grid_size]:
                image = Image.open(image_file)
                st.image(image, caption=image_file, use_column_width=True)
                k = image_file.split('.')[0]  # Assumes keyword is the file name without extension
                display_glossary_entity(k)


def get_all_query_params(key):
    return st.query_params().get(key, [])

def clear_query_params():
    st.query_params()  
                

# Function to display content or image based on a query
def display_content_or_image(query):
    # Check if the query matches any glossary term
    for category, terms in roleplaying_glossary.items():
        for term in terms:
            if query.lower() in term.lower():
                st.subheader(f"Found in {category}:")
                st.write(term)
                return True  # Return after finding and displaying the first match
    
    # Check for an image match in a predefined directory (adjust path as needed)
    image_dir = "images"  # Example directory where images are stored
    image_path = f"{image_dir}/{query}.png"  # Construct image path with query
    if os.path.exists(image_path):
        st.image(image_path, caption=f"Image for {query}")
        return True
    
    # If no content or image is found
    st.warning("No matching content or image found.")
    return False






# 1. Constants and Top Level UI Variables

# My Inference API Copy
API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud'  # Dr Llama
# Meta's Original - Chat HF Free Version:
#API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf"
API_KEY = os.getenv('API_KEY')
MODEL1="meta-llama/Llama-2-7b-chat-hf"
MODEL1URL="https://huggingface.co/meta-llama/Llama-2-7b-chat-hf"
HF_KEY = os.getenv('HF_KEY')
headers = {
    "Authorization": f"Bearer {HF_KEY}",
    "Content-Type": "application/json"
}
key = os.getenv('OPENAI_API_KEY')
prompt = f"Write instructions to teach discharge planning along with guidelines and patient education. List entities, features and relationships to CCDA and FHIR objects in boldface."
should_save = st.sidebar.checkbox("💾 Save", value=True, help="Save your session data.")

def SpeechSynthesis(result):
    documentHTML5='''
    <!DOCTYPE html>
    <html>
    <head>
        <title>Read It Aloud</title>
        <script type="text/javascript">
            function readAloud() {
                const text = document.getElementById("textArea").value;
                const speech = new SpeechSynthesisUtterance(text);
                window.speechSynthesis.speak(speech);
            }
        </script>
    </head>
    <body>
        <h1>🔊 Read It Aloud</h1>
        <textarea id="textArea" rows="10" cols="80">
    '''
    documentHTML5 = documentHTML5 + result
    documentHTML5 = documentHTML5 + '''
        </textarea>
        <br>
        <button onclick="readAloud()">🔊 Read Aloud</button>
    </body>
    </html>
    '''

    components.html(documentHTML5, width=1280, height=300)
    #return result


# 3. Stream Llama Response
# @st.cache_resource
def StreamLLMChatResponse(prompt):
    try:
        endpoint_url = API_URL
        hf_token = API_KEY
        st.write('Running client ' + endpoint_url)
        client = InferenceClient(endpoint_url, token=hf_token)
        gen_kwargs = dict(
            max_new_tokens=512,
            top_k=30,
            top_p=0.9,
            temperature=0.2,
            repetition_penalty=1.02,
            stop_sequences=["\nUser:", "<|endoftext|>", "</s>"],
        )
        stream = client.text_generation(prompt, stream=True, details=True, **gen_kwargs)
        report=[]
        res_box = st.empty()
        collected_chunks=[]
        collected_messages=[]
        allresults=''
        for r in stream:
            if r.token.special:
                continue
            if r.token.text in gen_kwargs["stop_sequences"]:
                break
            collected_chunks.append(r.token.text)
            chunk_message = r.token.text
            collected_messages.append(chunk_message)
            try:
                report.append(r.token.text)
                if len(r.token.text) > 0:
                    result="".join(report).strip()
                    res_box.markdown(f'*{result}*')
                    
            except:
                st.write('Stream llm issue')
        SpeechSynthesis(result)
        return result
    except:
        st.write('Llama model is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).')

# 4. Run query with payload
def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    st.markdown(response.json())
    return response.json()
def get_output(prompt):
    return query({"inputs": prompt})

# 5. Auto name generated output files from time and content
def generate_filename(prompt, file_type):
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
    replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
    safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:255]  # 255 is linux max, 260 is windows max
    #safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:45]
    return f"{safe_date_time}_{safe_prompt}.{file_type}"

# 6. Speech transcription via OpenAI service
def transcribe_audio(openai_key, file_path, model):
    openai.api_key = openai_key
    OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
    headers = {
        "Authorization": f"Bearer {openai_key}",
    }
    with open(file_path, 'rb') as f:
        data = {'file': f}
        st.write('STT transcript ' + OPENAI_API_URL)
        response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
    if response.status_code == 200:
        st.write(response.json())
        chatResponse = chat_with_model(response.json().get('text'), '') # *************************************
        transcript = response.json().get('text')
        filename = generate_filename(transcript, 'txt')
        response = chatResponse
        user_prompt = transcript
        create_file(filename, user_prompt, response, should_save)
        return transcript
    else:
        st.write(response.json())
        st.error("Error in API call.")
        return None

# 7. Auto stop on silence audio control for recording WAV files
def save_and_play_audio(audio_recorder):
    audio_bytes = audio_recorder(key='audio_recorder')
    if audio_bytes:
        filename = generate_filename("Recording", "wav")
        with open(filename, 'wb') as f:
            f.write(audio_bytes)
        st.audio(audio_bytes, format="audio/wav")
        return filename
    return None

# 8. File creator that interprets type and creates output file for text, markdown and code
def create_file(filename, prompt, response, should_save=True):
    if not should_save:
        return
    base_filename, ext = os.path.splitext(filename)
    if ext in ['.txt', '.htm', '.md']:
        with open(f"{base_filename}.md", 'w') as file:
            try:
                content = prompt.strip() + '\r\n' + response
                file.write(content)
            except:
                st.write('.')

    #has_python_code = re.search(r"```python([\s\S]*?)```", prompt.strip() + '\r\n' + response)
    #has_python_code = bool(re.search(r"```python([\s\S]*?)```", prompt.strip() + '\r\n' + response))
        #if has_python_code:
        #    python_code = re.findall(r"```python([\s\S]*?)```", response)[0].strip()
        #    with open(f"{base_filename}-Code.py", 'w') as file:
        #        file.write(python_code)
        #    with open(f"{base_filename}.md", 'w') as file:
        #        content = prompt.strip() + '\r\n' + response
        #        file.write(content)
            
def truncate_document(document, length):
    return document[:length]
def divide_document(document, max_length):
    return [document[i:i+max_length] for i in range(0, len(document), max_length)]

# 9. Sidebar with UI controls to review and re-run prompts and continue responses
@st.cache_resource
def get_table_download_link(file_path):
    with open(file_path, 'r') as file:
        data = file.read()
   
    b64 = base64.b64encode(data.encode()).decode()  
    file_name = os.path.basename(file_path)
    ext = os.path.splitext(file_name)[1]  # get the file extension
    if ext == '.txt':
        mime_type = 'text/plain'
    elif ext == '.py':
        mime_type = 'text/plain'
    elif ext == '.xlsx':
        mime_type = 'text/plain'
    elif ext == '.csv':
        mime_type = 'text/plain'
    elif ext == '.htm':
        mime_type = 'text/html'
    elif ext == '.md':
        mime_type = 'text/markdown'
    elif ext == '.wav':
        mime_type = 'audio/wav'
    else:
        mime_type = 'application/octet-stream'  # general binary data type
    href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
    return href


def CompressXML(xml_text):
    root = ET.fromstring(xml_text)
    for elem in list(root.iter()):
        if isinstance(elem.tag, str) and 'Comment' in elem.tag:
            elem.parent.remove(elem)
    return ET.tostring(root, encoding='unicode', method="xml")

# 10. Read in and provide UI for past files
@st.cache_resource
def read_file_content(file,max_length):
    if file.type == "application/json":
        content = json.load(file)
        return str(content)
    elif file.type == "text/html" or file.type == "text/htm":
        content = BeautifulSoup(file, "html.parser")
        return content.text
    elif file.type == "application/xml" or file.type == "text/xml":
        tree = ET.parse(file)
        root = tree.getroot()
        xml = CompressXML(ET.tostring(root, encoding='unicode'))
        return xml
    elif file.type == "text/markdown" or file.type == "text/md":
        md = mistune.create_markdown()
        content = md(file.read().decode())
        return content
    elif file.type == "text/plain":
        return file.getvalue().decode()
    else:
        return ""

# 11. Chat with GPT - Caution on quota 
@st.cache_resource
def chat_with_model(prompt, document_section='', model_choice='gpt-3.5-turbo'):
    model = model_choice
    conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
    conversation.append({'role': 'user', 'content': prompt})
    if len(document_section)>0:
        conversation.append({'role': 'assistant', 'content': document_section})
    start_time = time.time()
    report = []
    res_box = st.empty()
    collected_chunks = []
    collected_messages = []

    st.write('LLM stream ' + 'gpt-3.5-turbo')
    for chunk in openai.ChatCompletion.create(model='gpt-3.5-turbo', messages=conversation, temperature=0.5, stream=True):
        collected_chunks.append(chunk)  
        chunk_message = chunk['choices'][0]['delta']  
        collected_messages.append(chunk_message) 
        content=chunk["choices"][0].get("delta",{}).get("content")
        try:
            report.append(content)
            if len(content) > 0:
                result = "".join(report).strip()
                res_box.markdown(f'*{result}*') 
        except:
            st.write(' ')
    full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
    st.write("Elapsed time:")
    st.write(time.time() - start_time)
    return full_reply_content

def extract_mime_type(file):
    if isinstance(file, str):
        pattern = r"type='(.*?)'"
        match = re.search(pattern, file)
        if match:
            return match.group(1)
        else:
            raise ValueError(f"Unable to extract MIME type from {file}")
    elif isinstance(file, streamlit.UploadedFile):
        return file.type
    else:
        raise TypeError("Input should be a string or a streamlit.UploadedFile object")

def extract_file_extension(file):
    # get the file name directly from the UploadedFile object
    file_name = file.name
    pattern = r".*?\.(.*?)$"
    match = re.search(pattern, file_name)
    if match:
        return match.group(1)
    else:
        raise ValueError(f"Unable to extract file extension from {file_name}")

# Normalize input as text from PDF and other formats
@st.cache_resource
def pdf2txt(docs):
    text = ""
    for file in docs:
        file_extension = extract_file_extension(file)
        st.write(f"File type extension: {file_extension}")
        if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']:
            text += file.getvalue().decode('utf-8')
        elif file_extension.lower() == 'pdf':
            from PyPDF2 import PdfReader
            pdf = PdfReader(BytesIO(file.getvalue()))
            for page in range(len(pdf.pages)):
                text += pdf.pages[page].extract_text() # new PyPDF2 syntax
    return text

def txt2chunks(text):
    text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
    return text_splitter.split_text(text)

# Vector Store using FAISS
@st.cache_resource
def vector_store(text_chunks):
    embeddings = OpenAIEmbeddings(openai_api_key=key)
    return FAISS.from_texts(texts=text_chunks, embedding=embeddings)

# Memory and Retrieval chains
@st.cache_resource
def get_chain(vectorstore):
    llm = ChatOpenAI()
    memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
    return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory)

def process_user_input(user_question):
    response = st.session_state.conversation({'question': user_question})
    st.session_state.chat_history = response['chat_history']
    for i, message in enumerate(st.session_state.chat_history):
        template = user_template if i % 2 == 0 else bot_template
        st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
        filename = generate_filename(user_question, 'txt')
        response = message.content
        user_prompt = user_question
        create_file(filename, user_prompt, response, should_save)       

def divide_prompt(prompt, max_length):
    words = prompt.split()
    chunks = []
    current_chunk = []
    current_length = 0
    for word in words:
        if len(word) + current_length <= max_length:
            current_length += len(word) + 1 
            current_chunk.append(word)
        else:
            chunks.append(' '.join(current_chunk))
            current_chunk = [word]
            current_length = len(word)
    chunks.append(' '.join(current_chunk))
    return chunks

    
# 13. Provide way of saving all and deleting all to give way of reviewing output and saving locally before clearing it
    
@st.cache_resource
def create_zip_of_files(files):
    zip_name = "all_files.zip"
    with zipfile.ZipFile(zip_name, 'w') as zipf:
        for file in files:
            zipf.write(file)
    return zip_name
    
@st.cache_resource
def get_zip_download_link(zip_file):
    with open(zip_file, 'rb') as f:
        data = f.read()
    b64 = base64.b64encode(data).decode()
    href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
    return href

# 14. Inference Endpoints for Whisper (best fastest STT) on NVIDIA T4 and Llama (best fastest AGI LLM) on NVIDIA A10
# My Inference Endpoint
API_URL_IE = f'https://tonpixzfvq3791u9.us-east-1.aws.endpoints.huggingface.cloud'
# Original
API_URL_IE = "https://api-inference.huggingface.co/models/openai/whisper-small.en"
MODEL2 = "openai/whisper-small.en"
MODEL2_URL = "https://huggingface.co/openai/whisper-small.en"
#headers = {
#	"Authorization": "Bearer XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
#	"Content-Type": "audio/wav"
#}
# HF_KEY = os.getenv('HF_KEY')
HF_KEY = st.secrets['HF_KEY']
headers = {
    "Authorization": f"Bearer {HF_KEY}",
    "Content-Type": "audio/wav"
}

#@st.cache_resource
def query(filename):
    with open(filename, "rb") as f:
        data = f.read()
    response = requests.post(API_URL_IE, headers=headers, data=data)
    return response.json()

def generate_filename(prompt, file_type):
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
    replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
    safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
    return f"{safe_date_time}_{safe_prompt}.{file_type}"

# 15. Audio recorder to Wav file 
def save_and_play_audio(audio_recorder):
    audio_bytes = audio_recorder()
    if audio_bytes:
        filename = generate_filename("Recording", "wav")
        with open(filename, 'wb') as f:
            f.write(audio_bytes)
        st.audio(audio_bytes, format="audio/wav")
        return filename

# 16. Speech transcription to file output
def transcribe_audio(filename):
    output = query(filename)
    return output

def whisper_main():
    #st.title("Speech to Text")
    #st.write("Record your speech and get the text.")

    # Audio, transcribe, GPT:
    filename = save_and_play_audio(audio_recorder)
    if filename is not None:
        transcription = transcribe_audio(filename)
        try:
            transcript = transcription['text']
            st.write(transcript)

        except:
            transcript=''
            st.write(transcript)

        
        # Whisper to GPT: New!! ---------------------------------------------------------------------
        st.write('Reasoning with your inputs with GPT..')
        response = chat_with_model(transcript)
        st.write('Response:')
        st.write(response)

        filename = generate_filename(response, "txt")
        create_file(filename, transcript, response, should_save)
        # Whisper to GPT: New!! ---------------------------------------------------------------------
        
        
        # Whisper to Llama:
       # response = StreamLLMChatResponse(transcript)
        #filename_txt = generate_filename(transcript, "md")
        #create_file(filename_txt, transcript, response, should_save)

        filename_wav = filename.replace('.txt', '.wav')
        import shutil
        try: 
            if os.path.exists(filename):
                shutil.copyfile(filename, filename_wav)
        except:
            st.write('.')

        if os.path.exists(filename):
            os.remove(filename)

        #st.experimental_rerun()
        #except:
        #    st.write('Starting Whisper Model on GPU.  Please retry in 30 seconds.')



# Sample function to demonstrate a response, replace with your own logic
def StreamMedChatResponse(topic):
    st.write(f"Showing resources or questions related to: {topic}")


# 17. Main
def main():
    prompt = f"Write ten funny jokes that are tweet length stories that make you laugh.  Show as markdown outline with emojis for each."
    # Add Wit and Humor buttons
    # add_witty_humor_buttons()
    # add_medical_exam_buttons()

    with st.expander("Prompts 📚", expanded=False):
        example_input = st.text_input("Enter your prompt text for Llama:", value=prompt, help="Enter text to get a response from DromeLlama.")
        if st.button("Run Prompt With Llama model", help="Click to run the prompt."):
            try:
                response=StreamLLMChatResponse(example_input)
                create_file(filename, example_input, response, should_save)
            except:
                st.write('Llama model is asleep. Starting now on A10 GPU.  Please wait one minute then retry.  KEDA triggered.')

        openai.api_key = os.getenv('OPENAI_API_KEY')
        if openai.api_key == None: openai.api_key = st.secrets['OPENAI_API_KEY']
        
        menu = ["txt", "htm", "xlsx", "csv", "md", "py"]
        choice = st.sidebar.selectbox("Output File Type:", menu)
        
        model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))        
        
        user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)
        collength, colupload = st.columns([2,3])  # adjust the ratio as needed
        with collength:
            max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
        with colupload:
            uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"])
        document_sections = deque()
        document_responses = {}
        if uploaded_file is not None:
            file_content = read_file_content(uploaded_file, max_length)
            document_sections.extend(divide_document(file_content, max_length))
        if len(document_sections) > 0:
            if st.button("👁️ View Upload"):
                st.markdown("**Sections of the uploaded file:**")
                for i, section in enumerate(list(document_sections)):
                    st.markdown(f"**Section {i+1}**\n{section}")
            st.markdown("**Chat with the model:**")
            for i, section in enumerate(list(document_sections)):
                if i in document_responses:
                    st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
                else:
                    if st.button(f"Chat about Section {i+1}"):
                        st.write('Reasoning with your inputs...')
                        #response = chat_with_model(user_prompt, section, model_choice)
                        st.write('Response:')
                        st.write(response)
                        document_responses[i] = response
                        filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
                        create_file(filename, user_prompt, response, should_save)
                        st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)

                        
        if st.button('💬 Chat'):
            st.write('Reasoning with your inputs...')
            user_prompt_sections = divide_prompt(user_prompt, max_length)
            full_response = ''
            for prompt_section in user_prompt_sections:
                response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice)
                full_response += response + '\n'  # Combine the responses
            response = full_response
            st.write('Response:')
            st.write(response)
            filename = generate_filename(user_prompt, choice)
            create_file(filename, user_prompt, response, should_save)

    # Compose a file sidebar of markdown md files:
    all_files = glob.glob("*.md")
    all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10]  # exclude files with short names
    all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)  # sort by file type and file name in descending order
    if st.sidebar.button("🗑 Delete All Text"):
        for file in all_files:
            os.remove(file)
        st.experimental_rerun()
    if st.sidebar.button("⬇️ Download All"):
        zip_file = create_zip_of_files(all_files)
        st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
    file_contents=''
    next_action=''
    for file in all_files:
        col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1])  # adjust the ratio as needed
        with col1:
            if st.button("🌐", key="md_"+file):  # md emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='md'
        with col2:
            st.markdown(get_table_download_link(file), unsafe_allow_html=True)
        with col3:
            if st.button("📂", key="open_"+file):  # open emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='open'
        with col4:
            if st.button("🔍", key="read_"+file):  # search emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='search'
        with col5:
            if st.button("🗑", key="delete_"+file):
                os.remove(file)
                st.experimental_rerun()

                
    if len(file_contents) > 0:
        if next_action=='open':
            file_content_area = st.text_area("File Contents:", file_contents, height=500)
        if next_action=='md':
            st.markdown(file_contents)

            buttonlabel = '🔍Run with Llama and GPT.'
            if st.button(key='RunWithLlamaandGPT', label = buttonlabel):
                user_prompt = file_contents
                
                # Llama versus GPT Battle!
                all=""
              #  try:
                    #st.write('🔍Running with Llama.')
                #    response = StreamLLMChatResponse(file_contents)
                    #filename = generate_filename(user_prompt, "md")
                   # create_file(filename, file_contents, response, should_save)
                    #all=response
                    #SpeechSynthesis(response)
              #  except:
                 #   st.markdown('Llama is sleeping.  Restart ETA 30 seconds.')
                
                # gpt
                try:
                    st.write('🔍Running with GPT.')
                    response2 = chat_with_model(user_prompt, file_contents, model_choice)
                    filename2 = generate_filename(file_contents, choice)
                    create_file(filename2, user_prompt, response, should_save)
                    all=all+response2
                    #SpeechSynthesis(response2)
                except:
                    st.markdown('GPT is sleeping.  Restart ETA 30 seconds.')
    
                SpeechSynthesis(all)

            
        if next_action=='search':
            file_content_area = st.text_area("File Contents:", file_contents, height=500)
            st.write('🔍Running with Llama and GPT.')

            user_prompt = file_contents
            
            # Llama versus GPT Battle!
            all=""
            try:
                st.write('🔍Running with Llama.')
                response = StreamLLMChatResponse(file_contents)
                filename = generate_filename(user_prompt, ".md")
                create_file(filename, file_contents, response, should_save)
                all=response
                #SpeechSynthesis(response)
            except:
                st.markdown('Llama is sleeping.  Restart ETA 30 seconds.')
            
            # gpt
            try:
                st.write('🔍Running with GPT.')
                response2 = chat_with_model(user_prompt, file_contents, model_choice)
                filename2 = generate_filename(file_contents, choice)
                create_file(filename2, user_prompt, response, should_save)
                all=all+response2
                #SpeechSynthesis(response2)
            except:
                st.markdown('GPT is sleeping.  Restart ETA 30 seconds.')

            SpeechSynthesis(all)
            

    # Function to encode file to base64
    def get_base64_encoded_file(file_path):
        with open(file_path, "rb") as file:
            return base64.b64encode(file.read()).decode()

    # Function to create a download link
    def get_audio_download_link(file_path):
        base64_file = get_base64_encoded_file(file_path)
        return f'<a href="data:file/wav;base64,{base64_file}" download="{os.path.basename(file_path)}">⬇️ Download Audio</a>'

    # Compose a file sidebar of past encounters
    all_files = glob.glob("*.wav")
    all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10]  # exclude files with short names
    all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)  # sort by file type and file name in descending order

    filekey = 'delall'
    if st.sidebar.button("🗑 Delete All Audio", key=filekey):
        for file in all_files:
            os.remove(file)
        st.experimental_rerun()

    for file in all_files:
        col1, col2 = st.sidebar.columns([6, 1])  # adjust the ratio as needed
        with col1:
            st.markdown(file)
            if st.button("🎵", key="play_" + file):  # play emoji button
                audio_file = open(file, 'rb')
                audio_bytes = audio_file.read()
                st.audio(audio_bytes, format='audio/wav')
                #st.markdown(get_audio_download_link(file), unsafe_allow_html=True)
                #st.text_input(label="", value=file)
        with col2:
            if st.button("🗑", key="delete_" + file):
                os.remove(file)
                st.experimental_rerun()



    # Feedback
    # Step: Give User a Way to Upvote or Downvote
    GiveFeedback=False
    if GiveFeedback:
        with st.expander("Give your feedback 👍", expanded=False):
    
            feedback = st.radio("Step 8: Give your feedback", ("👍 Upvote", "👎 Downvote"))
            if feedback == "👍 Upvote":
                st.write("You upvoted 👍. Thank you for your feedback!")
            else:
                st.write("You downvoted 👎. Thank you for your feedback!")
                
            load_dotenv()
            st.write(css, unsafe_allow_html=True)
            st.header("Chat with documents :books:")
            user_question = st.text_input("Ask a question about your documents:")
            if user_question:
                process_user_input(user_question)
            with st.sidebar:
                st.subheader("Your documents")
                docs = st.file_uploader("import documents", accept_multiple_files=True)
                with st.spinner("Processing"):
                    raw = pdf2txt(docs)
                    if len(raw) > 0:
                        length = str(len(raw))
                        text_chunks = txt2chunks(raw)
                        vectorstore = vector_store(text_chunks)
                        st.session_state.conversation = get_chain(vectorstore)
                        st.markdown('# AI Search Index of Length:' + length + ' Created.')  # add timing
                        filename = generate_filename(raw, 'txt')
                        create_file(filename, raw, '', should_save)
    
    # Relocated!  Hope you like your new space - enjoy!
    # Display instructions and handle query parameters
    #st.markdown("## Glossary Lookup\nEnter a term in the URL query, like `?q=Body Scan` or `?query=Body Map`.")

    
    try:
        query_params = st.query_params
        query = (query_params.get('q') or query_params.get('query') or [''])
        st.markdown('# Running query: ' + query)
        if query: search_glossary(query)
    except:
        st.markdown(' ')

    st.title("🎲🗺️ Body Map Conditions")
    #st.markdown("## Explore the body with a body scan map which fosters self knowledge about the body.🌠")
    #st.title("Body Map Glossary 🎲")

    # Display the glossary grid
    display_videos_and_links()   # Video Jump Grid
    display_images_and_wikipedia_summaries()
    display_glossary_grid(roleplaying_glossary)
    display_buttons_with_scores()
    
    # Example: Using query parameters to navigate or trigger functionalities
    if 'action' in st.query_params:
        action = st.query_params()['action'][0]  # Get the first (or only) 'action' parameter
        if action == 'show_message':
            st.success("Showing a message because 'action=show_message' was found in the URL.")
        elif action == 'clear':
            clear_query_params()
            st.experimental_rerun()
    
    # Handling repeated keys
    if 'multi' in st.query_params:
        multi_values = get_all_query_params('multi')
        st.write("Values for 'multi':", multi_values)
    
    # Manual entry for demonstration
    st.write("Enter query parameters in the URL like this: ?action=show_message&multi=1&multi=2")
    
    if 'query' in st.query_params:
        query = st.query_params['query'][0]  # Get the query parameter
        # Display content or image based on the query
        display_content_or_image(query)
    
    # Add a clear query parameters button for convenience
    if st.button("Clear Query Parameters", key='ClearQueryParams'):
        # This will clear the browser URL's query parameters
        st.experimental_set_query_params
        st.experimental_rerun()
                    
# 18. Run AI Pipeline
if __name__ == "__main__":
    whisper_main()
    main()