Spaces:
Runtime error
Runtime error
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration | |
import torch | |
import gradio as gr | |
from datasets import load_dataset | |
# PersistDataset ----- | |
import os | |
import csv | |
from gradio import inputs, outputs | |
import huggingface_hub | |
from huggingface_hub import Repository, hf_hub_download, upload_file | |
from datetime import datetime | |
#fastapi is where its at: share your app, share your api | |
import fastapi | |
from typing import List, Dict | |
import httpx | |
import pandas as pd | |
# -------------------------------------------- For Memory - you will need to set up a dataset and HF_TOKEN --------- | |
UseMemory=False | |
DATASET_REPO_URL="https://huggingface.co/datasets/awacke1/ChatbotMemory.csv" | |
DATASET_REPO_ID="awacke1/ChatbotMemory.csv" | |
DATA_FILENAME="ChatbotMemory.csv" | |
DATA_FILE=os.path.join("data", DATA_FILENAME) | |
HF_TOKEN=os.environ.get("HF_TOKEN") | |
if UseMemory: | |
try: | |
hf_hub_download( | |
repo_id=DATASET_REPO_ID, | |
filename=DATA_FILENAME, | |
cache_dir=DATA_DIRNAME, | |
force_filename=DATA_FILENAME | |
) | |
except: | |
print("file not found") | |
repo = Repository( | |
local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN | |
) | |
def get_df(name: str): | |
dataset = load_dataset(str, split="train") | |
return dataset | |
#def store_message(name: str, message: str) -> str: | |
def store_message(name: str, message: str): | |
if name and message: | |
with open(DATA_FILE, "a") as csvfile: | |
writer = csv.DictWriter(csvfile, fieldnames=[ "time", "message", "name", ]) | |
writer.writerow( | |
{"time": str(datetime.now()), "message": message.strip(), "name": name.strip() } | |
) | |
commit_url = repo.push_to_hub() | |
# test api retrieval of any dataset that is saved, then return it... | |
# app = FastAPI() | |
# see: https://gradio.app/sharing_your_app/#api-page | |
# f=get_df(DATASET_REPO_ID) | |
# print(f) | |
#return commit_url | |
return "" | |
# ----------------------------------------------- For Memory | |
mname = "facebook/blenderbot-400M-distill" | |
model = BlenderbotForConditionalGeneration.from_pretrained(mname) | |
tokenizer = BlenderbotTokenizer.from_pretrained(mname) | |
def take_last_tokens(inputs, note_history, history): | |
"""Filter the last 128 tokens""" | |
if inputs['input_ids'].shape[1] > 128: | |
inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-128:].tolist()]) | |
inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-128:].tolist()]) | |
note_history = ['</s> <s>'.join(note_history[0].split('</s> <s>')[2:])] | |
history = history[1:] | |
return inputs, note_history, history | |
def add_note_to_history(note, note_history):# good example of non async since we wait around til we know it went okay. | |
"""Add a note to the historical information""" | |
note_history.append(note) | |
note_history = '</s> <s>'.join(note_history) | |
return [note_history] | |
title = "💬ChatBack🧠💾" | |
description = """Chatbot With persistent memory dataset allowing multiagent system AI to access a shared dataset as memory pool with stored interactions. | |
Current Best SOTA Chatbot: https://huggingface.co/facebook/blenderbot-400M-distill?text=Hey+my+name+is+ChatBack%21+Are+you+ready+to+rock%3F """ | |
def chat(message, history): | |
history = history or [] | |
if history: | |
history_useful = ['</s> <s>'.join([str(a[0])+'</s> <s>'+str(a[1]) for a in history])] | |
else: | |
history_useful = [] | |
history_useful = add_note_to_history(message, history_useful) | |
inputs = tokenizer(history_useful, return_tensors="pt") | |
inputs, history_useful, history = take_last_tokens(inputs, history_useful, history) | |
reply_ids = model.generate(**inputs) | |
response = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0] | |
history_useful = add_note_to_history(response, history_useful) | |
list_history = history_useful[0].split('</s> <s>') | |
history.append((list_history[-2], list_history[-1])) | |
#ret = | |
if UseMemory: | |
store_message(message, response) # Save to dataset -- uncomment with code above, create a dataset to store and add your HF_TOKEN from profile to this repo to use. | |
return history, history | |
gr.Interface( | |
fn=chat, | |
theme="huggingface", | |
css=".footer {display:none !important}", | |
inputs=["text", "state"], | |
#outputs=["chatbot", "state", "text"], | |
outputs=["chatbot", "state"], | |
title=title, | |
allow_flagging="never", | |
description=f"Gradio chatbot backed by memory in a dataset repository.", | |
article=f"The memory dataset for saves is [{DATASET_REPO_URL}]({DATASET_REPO_URL}) And here: https://huggingface.co/spaces/awacke1/DatasetAnalyzer Code and datasets on chat are here hf tk: https://paperswithcode.com/datasets?q=chat&v=lst&o=newest" | |
).launch(debug=True) | |