File size: 4,997 Bytes
fbc3a6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
775b3fc
fbc3a6c
 
 
 
0346279
 
 
 
 
 
fbc3a6c
0346279
 
 
 
 
 
 
 
fbc3a6c
0346279
fbc3a6c
 
 
 
 
 
 
 
 
 
0346279
 
 
 
 
fbc3a6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import streamlit as st
import cv2
import numpy as np
import datetime
import os
import time
import base64
import re
import glob
from camera_input_live import camera_input_live
import face_recognition

st.set_page_config(layout="wide")

def get_image_count():
    return {'count': 0}

def save_image(image, image_count):
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    filename = f"captured_image_{timestamp}_{image_count['count']}.png"
    image_count['count'] += 1
    bytes_data = image.getvalue()
    cv2_img = cv2.imdecode(np.frombuffer(bytes_data, np.uint8), cv2.IMREAD_COLOR)
    cv2.imwrite(filename, cv2_img)
    return filename

def get_image_base64(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode()

def process_line(line):
    if re.search(r'\b[A-G][#b]?m?\b', line):
        line = re.sub(r'\b([A-G][#b]?m?)\b', r"<img src='\1.png' style='height:20px;'>", line)
    return line

def process_sheet(sheet):
    processed_lines = []
    for line in sheet.split('\n'):
        processed_line = process_line(line)
        processed_lines.append(processed_line)
    return '<br>'.join(processed_lines)

def main():
    col1, col2 = st.columns([2, 3])

    with col1:
        st.markdown("✨ Magic Lens: Real-Time Camera Stream 🌈")

        snapshot_interval = st.slider("Snapshot Interval (seconds)", 1, 10, 5)
        image_placeholder = st.empty()

        if 'captured_images' not in st.session_state:
            st.session_state['captured_images'] = []
        if 'last_captured' not in st.session_state:
            st.session_state['last_captured'] = time.time()

        image = camera_input_live()
        if image is not None:
            rgb_image = cv2.cvtColor(cv2.imdecode(np.frombuffer(image.getvalue(), np.uint8), cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB)

            face_locations = face_recognition.face_locations(rgb_image)
            face_encodings = face_recognition.face_encodings(rgb_image, face_locations)

            if os.path.isfile("known_face.jpg"):
                known_image = face_recognition.load_image_file("known_face.jpg")
                known_encoding = face_recognition.face_encodings(known_image)[0]
            else:
                known_encoding = None

            for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):
                if known_encoding is not None:
                    matches = face_recognition.compare_faces([known_encoding], face_encoding)

                    if True in matches:
                        cv2.rectangle(rgb_image, (left, top), (right, bottom), (0, 255, 0), 2)
                        cv2.putText(rgb_image, "Known Face", (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
                    else:
                        cv2.rectangle(rgb_image, (left, top), (right, bottom), (0, 0, 255), 2)
                else:
                    cv2.rectangle(rgb_image, (left, top), (right, bottom), (255, 0, 0), 2)

            bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
            image_placeholder.image(bgr_image, channels="BGR")

            if time.time() - st.session_state['last_captured'] > snapshot_interval:
                image_count = get_image_count()
                filename = save_image(image, image_count)
                st.session_state['captured_images'].append(filename)
                st.session_state['last_captured'] = time.time()

        if st.button("Register Known Face"):
            if image is not None:
                cv2.imwrite("known_face.jpg", np.array(image))
                st.success("Known face registered successfully!")

        sidebar_html = "<div style='display:flex;flex-direction:column;'>"
        for img_file in st.session_state['captured_images']:
            image_base64 = get_image_base64(img_file)
            sidebar_html += f"<img src='data:image/png;base64,{image_base64}' style='width:100px;'><br>"
        sidebar_html += "</div>"
        st.sidebar.markdown("## Captured Images")
        st.sidebar.markdown(sidebar_html, unsafe_allow_html=True)

        st.markdown(f"<script>setInterval(function() {{ document.getElementById('timer').innerHTML = new Date().toLocaleTimeString(); }}, 1000);</script><div>Current Time: <span id='timer'></span></div>", unsafe_allow_html=True)

    with col2:
        st.markdown("## 🎬 Action! Real-Time Camera Stream Highlights 📽️")

        all_files = [f for f in glob.glob("*.png") if ' by ' in f]
        selected_file = st.selectbox("Choose a Dataset:", all_files)

        if selected_file:
            with open(selected_file, 'r', encoding='utf-8') as file:
                sheet = file.read()
            st.markdown(process_sheet(sheet), unsafe_allow_html=True)

    if 'last_captured' in st.session_state and time.time() - st.session_state['last_captured'] > snapshot_interval:
        st.experimental_rerun()

if __name__ == "__main__":
    main()