File size: 11,008 Bytes
9174061
 
15e0e79
 
9174061
15e0e79
 
 
 
9174061
 
15e0e79
 
 
 
 
c111d62
15e0e79
 
 
6c4d96e
15e0e79
 
9174061
15e0e79
 
9174061
15e0e79
 
9174061
15e0e79
 
 
 
 
 
 
9174061
15e0e79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f8056b
15e0e79
 
9174061
15e0e79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9174061
 
 
 
15e0e79
9174061
 
15e0e79
9174061
 
 
 
 
 
4f8056b
 
9174061
 
 
 
4f8056b
 
 
 
 
 
 
 
15e0e79
4f8056b
 
 
 
 
 
 
 
 
 
 
15e0e79
4f8056b
 
 
 
 
 
15e0e79
4f8056b
 
 
15e0e79
4f8056b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15e0e79
 
4f8056b
 
 
15e0e79
4f8056b
 
 
 
15e0e79
4f8056b
 
15e0e79
4f8056b
 
15e0e79
4f8056b
 
 
 
 
15e0e79
4f8056b
 
 
15e0e79
 
4f8056b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15e0e79
4f8056b
15e0e79
 
4f8056b
15e0e79
 
 
4f8056b
15e0e79
4f8056b
 
 
15e0e79
 
 
 
4f8056b
15e0e79
4f8056b
15e0e79
 
 
 
9174061
15e0e79
9174061
4f8056b
9174061
 
 
15e0e79
 
9174061
15e0e79
4f8056b
15e0e79
 
9174061
15e0e79
4f8056b
 
15e0e79
4f8056b
 
15e0e79
 
 
4f8056b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import streamlit as st
import time
import random
import json
from datetime import datetime
import pytz
import platform
import uuid
import extra_streamlit_components as stx
from io import BytesIO
from PIL import Image
import base64
import cv2
import requests
from moviepy.editor import VideoFileClip
from gradio_client import Client
from openai import OpenAI
import openai
import os
from collections import deque

# Set page config
st.set_page_config(page_title="Personalized Real-Time Chat", page_icon="💬", layout="wide")

# Initialize cookie manager
cookie_manager = stx.CookieManager()

# File to store chat history and user data
CHAT_FILE = "chat_history.txt"

# Function to save chat history and user data to file
def save_data():
    with open(CHAT_FILE, 'w') as f:
        json.dump({
            'messages': st.session_state.messages,
            'users': st.session_state.users
        }, f)

# Function to load chat history and user data from file
def load_data():
    try:
        with open(CHAT_FILE, 'r') as f:
            data = json.load(f)
            st.session_state.messages = data['messages']
            st.session_state.users = data['users']
    except FileNotFoundError:
        st.session_state.messages = []
        st.session_state.users = []

# Load data at the start
load_data()

# Function to get or create user
def get_or_create_user():
    user_id = cookie_manager.get(cookie='user_id')
    if not user_id:
        user_id = str(uuid.uuid4())
        cookie_manager.set('user_id', user_id)
    
    user = next((u for u in st.session_state.users if u['id'] == user_id), None)
    if not user:
        user = {
            'id': user_id,
            'name': random.choice(['Alice', 'Bob', 'Charlie', 'David', 'Eve', 'Frank', 'Grace', 'Henry']),
            'browser': f"{platform.system()} - {st.session_state.get('browser_info', 'Unknown')}"
        }
        st.session_state.users.append(user)
        save_data()
    
    return user

# Initialize session state
if 'messages' not in st.session_state:
    st.session_state.messages = []
if 'users' not in st.session_state:
    st.session_state.users = []
if 'current_user' not in st.session_state:
    st.session_state.current_user = get_or_create_user()

# Sidebar for user information and settings
with st.sidebar:
    st.title("User Info")
    st.write(f"Current User: {st.session_state.current_user['name']}")
    st.write(f"Browser: {st.session_state.current_user['browser']}")
    
    new_name = st.text_input("Change your name:")
    if st.button("Update Name"):
        if new_name:
            for user in st.session_state.users:
                if user['id'] == st.session_state.current_user['id']:
                    user['name'] = new_name
                    st.session_state.current_user['name'] = new_name
                    save_data()
                    st.success(f"Name updated to {new_name}")
                    break
    st.title("Active Users")
    for user in st.session_state.users:
        st.write(f"{user['name']} ({user['browser']})")

# Main chat area
st.title("Personalized Real-Time Chat")

# Display chat messages
chat_container = st.container()

# Input for new message
new_message = st.text_input("Type your message:")
if st.button("Send"):
    if new_message:
        timestamp = datetime.now(pytz.utc).strftime('%Y-%m-%d %H:%M:%S %Z')
        st.session_state.messages.append({
            'user': st.session_state.current_user['name'],
            'message': new_message,
            'timestamp': timestamp
        })
        save_data()
        st.experimental_rerun()

# Function to display chat messages
def display_messages():
    for msg in st.session_state.messages:
        with chat_container.container():
            st.write(f"**{msg['user']}** ({msg['timestamp']}): {msg['message']}")

# Display messages
display_messages()

# Polling for updates
if st.button("Refresh Chat"):
    load_data()
    st.experimental_rerun()

# Auto-refresh (note: this will refresh the entire app)
time.sleep(5)
st.experimental_rerun()

# Additional functionalities for text, image, audio, and video processing

# Function to generate filenames
def generate_filename(prompt, file_type):
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
    replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
    safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
    return f"{safe_date_time}_{safe_prompt}.{file_type}"

# Function to process text
def process_text(text_input):
    if text_input:
        st.session_state.messages.append({"role": "user", "content": text_input})
        with st.chat_message("user"):
            st.markdown(text_input)
        with st.chat_message("assistant"):
            completion = client.chat.completions.create(
                model=MODEL,
                messages=[
                    {"role": m["role"], "content": m["content"]}
                    for m in st.session_state.messages
                ],
                stream=False
            )
            return_text = completion.choices[0].message.content
            st.write("Assistant: " + return_text)
            filename = generate_filename(text_input, "md")
            create_file(filename, text_input, return_text, should_save)
            st.session_state.messages.append({"role": "assistant", "content": return_text})

# Function to process image
def process_image(image_input, user_prompt):
    if isinstance(image_input, str):
        with open(image_input, "rb") as image_file:
            image_input = image_file.read()
    base64_image = base64.b64encode(image_input).decode("utf-8")
    response = client.chat.completions.create(
        model=MODEL,
        messages=[
            {"role": "system", "content": "You are a helpful assistant that responds in Markdown."},
            {"role": "user", "content": [
                {"type": "text", "text": user_prompt},
                {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}
            ]}
        ],
        temperature=0.0,
    )
    image_response = response.choices[0].message.content
    st.markdown(image_response)
    filename_md = generate_filename(user_prompt, "md")
    create_file(filename_md, image_response, '', True)
    return image_response

# Function to process audio
def process_audio(audio_input, text_input):
    if audio_input:
        transcription = client.audio.transcriptions.create(
            model="whisper-1",
            file=audio_input,
        )
        st.session_state.messages.append({"role": "user", "content": transcription.text})
        with st.chat_message("assistant"):
            st.markdown(transcription.text)
            SpeechSynthesis(transcription.text)
            filename = generate_filename(transcription.text, "wav")
            create_audio_file(filename, audio_input, should_save)
        filename = generate_filename(transcription.text, "md")
        create_file(filename, transcription.text, transcription.text, should_save)

# Function to process video
def process_video(video_input, user_prompt):
    if isinstance(video_input, str):
        with open(video_input, "rb") as video_file:
            video_input = video_file.read()
    base64Frames, audio_path = extract_video_frames(video_input)
    transcript = process_audio_for_video(video_input)
    response = client.chat.completions.create(
        model=MODEL,
        messages=[
            {"role": "system", "content": "You are generating a video summary. Create a summary of the provided video and its transcript. Respond in Markdown"},
            {"role": "user", "content": [
                "These are the frames from the video.",
                *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames),
                {"type": "text", "text": f"The audio transcription is: {transcript}"},
                {"type": "text", "text": user_prompt}
            ]}
        ],
        temperature=0,
    )
    video_response = response.choices[0].message.content
    st.markdown(video_response)
    filename_md = generate_filename(user_prompt, "md")
    create_file(filename_md, video_response, '', True)
    return video_response

# Function to extract video frames
def extract_video_frames(video_path, seconds_per_frame=2):
    base64Frames = []
    video = cv2.VideoCapture(video_path)
    total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = video.get(cv2.CAP_PROP_FPS)
    frames_to_skip = int(fps * seconds_per_frame)
    curr_frame = 0
    while curr_frame < total_frames - 1:
        video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
        success, frame = video.read()
        if not success:
            break
        _, buffer = cv2.imencode(".jpg", frame)
        base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
        curr_frame += frames_to_skip
    video.release()
    return base64Frames, None

# Function to process audio for video
def process_audio_for_video(video_input):
    try:
        transcription = client.audio.transcriptions.create(
            model="whisper-1",
            file=video_input,
        )
        return transcription.text
    except:
        return ''

# Function to create files
def create_file(filename, prompt, response, is_image=False):
    with open(filename, "w", encoding="utf-8") as f:
        f.write(prompt + "\n\n" + response)

# Initialize OpenAI client
openai.api_key = os.getenv('OPENAI_API_KEY')
openai.organization = os.getenv('OPENAI_ORG_ID')
client = OpenAI(api_key=openai.api_key, organization=openai.organization)
MODEL = "gpt-4o-2024-05-13"
should_save = st.sidebar.checkbox("💾 Save", value=True, help="Save your session data.")

# Main function
def main():
    st.markdown("##### GPT-4o Omni Model: Text, Audio, Image, & Video")
    option = st.selectbox("Select an option", ("Text", "Image", "Audio", "Video"))
    if option == "Text":
        text_input = st.text_input("Enter your text:")
        if text_input:
            process_text(text_input)
    elif option == "Image":
        text_input = st.text_input("Enter text prompt to use with Image context:")
        image_input = st.file_uploader("Upload an image", type=["png"])
        if image_input:
            process_image(image_input, text_input)
    elif option == "Audio":
        text_input = st.text_input("Enter text prompt to use with Audio context:")
        uploaded_files = st.file_uploader("Upload an audio file", type=["mp3", "wav"], accept_multiple_files=True)
        for audio_input in uploaded_files:
            process_audio(audio_input, text_input)
    elif option == "Video":
        video_input = st.file_uploader("Upload a video file", type=["mp4"])
        text_input = st.text_input("Enter text prompt to use with Video context:")
        if video_input and text_input:
            process_video(video_input, text_input)

main()