Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import time
|
3 |
+
import random
|
4 |
+
import json
|
5 |
+
from datetime import datetime
|
6 |
+
import pytz
|
7 |
+
import platform
|
8 |
+
import uuid
|
9 |
+
import extra_streamlit_components as stx
|
10 |
+
from io import BytesIO
|
11 |
+
from PIL import Image
|
12 |
+
import base64
|
13 |
+
import cv2
|
14 |
+
import requests
|
15 |
+
from moviepy.editor import VideoFileClip
|
16 |
+
from gradio_client import Client
|
17 |
+
from openai import OpenAI
|
18 |
+
import openai
|
19 |
+
import os
|
20 |
+
from collections import deque
|
21 |
+
import numpy as np
|
22 |
+
from dotenv import load_dotenv
|
23 |
+
|
24 |
+
# Load environment variables
|
25 |
+
load_dotenv()
|
26 |
+
|
27 |
+
# Set page config
|
28 |
+
st.set_page_config(page_title="Personalized Real-Time Chat", page_icon="💬", layout="wide")
|
29 |
+
|
30 |
+
# Initialize cookie manager
|
31 |
+
cookie_manager = stx.CookieManager()
|
32 |
+
|
33 |
+
# File to store chat history and user data
|
34 |
+
CHAT_FILE = "chat_history.txt"
|
35 |
+
|
36 |
+
# Function to save chat history and user data to file
|
37 |
+
def save_data():
|
38 |
+
with open(CHAT_FILE, 'w') as f:
|
39 |
+
json.dump({
|
40 |
+
'messages': st.session_state.messages,
|
41 |
+
'users': st.session_state.users
|
42 |
+
}, f)
|
43 |
+
|
44 |
+
# Function to load chat history and user data from file
|
45 |
+
def load_data():
|
46 |
+
try:
|
47 |
+
with open(CHAT_FILE, 'r') as f:
|
48 |
+
data = json.load(f)
|
49 |
+
st.session_state.messages = data['messages']
|
50 |
+
st.session_state.users = data['users']
|
51 |
+
except FileNotFoundError:
|
52 |
+
st.session_state.messages = []
|
53 |
+
st.session_state.users = []
|
54 |
+
|
55 |
+
# Load data at the start
|
56 |
+
load_data()
|
57 |
+
|
58 |
+
# Function to get or create user
|
59 |
+
def get_or_create_user():
|
60 |
+
user_id = cookie_manager.get(cookie='user_id')
|
61 |
+
if not user_id:
|
62 |
+
user_id = str(uuid.uuid4())
|
63 |
+
cookie_manager.set('user_id', user_id)
|
64 |
+
|
65 |
+
user = next((u for u in st.session_state.users if u['id'] == user_id), None)
|
66 |
+
if not user:
|
67 |
+
user = {
|
68 |
+
'id': user_id,
|
69 |
+
'name': random.choice(['Alice', 'Bob', 'Charlie', 'David', 'Eve', 'Frank', 'Grace', 'Henry']),
|
70 |
+
'browser': f"{platform.system()} - {st.session_state.get('browser_info', 'Unknown')}"
|
71 |
+
}
|
72 |
+
st.session_state.users.append(user)
|
73 |
+
save_data()
|
74 |
+
|
75 |
+
return user
|
76 |
+
|
77 |
+
# Initialize session state
|
78 |
+
if 'messages' not in st.session_state:
|
79 |
+
st.session_state.messages = []
|
80 |
+
if 'users' not in st.session_state:
|
81 |
+
st.session_state.users = []
|
82 |
+
if 'current_user' not in st.session_state:
|
83 |
+
st.session_state.current_user = get_or_create_user()
|
84 |
+
|
85 |
+
# Initialize OpenAI client
|
86 |
+
openai.api_key = os.getenv('OPENAI_API_KEY')
|
87 |
+
openai.organization = os.getenv('OPENAI_ORG_ID')
|
88 |
+
client = OpenAI(api_key=openai.api_key, organization=openai.organization)
|
89 |
+
GPT4O_MODEL = "gpt-4o-2024-05-13"
|
90 |
+
|
91 |
+
# Initialize HuggingFace client
|
92 |
+
hf_client = OpenAI(
|
93 |
+
base_url="https://api-inference.huggingface.co/v1",
|
94 |
+
api_key=os.environ.get('API_KEY')
|
95 |
+
)
|
96 |
+
|
97 |
+
# Create supported models
|
98 |
+
model_links = {
|
99 |
+
"GPT-4o": GPT4O_MODEL,
|
100 |
+
"Meta-Llama-3.1-70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct",
|
101 |
+
"Meta-Llama-3.1-405B-Instruct-FP8": "meta-llama/Meta-Llama-3.1-405B-Instruct-FP8",
|
102 |
+
"Meta-Llama-3.1-405B-Instruct": "meta-llama/Meta-Llama-3.1-405B-Instruct",
|
103 |
+
"Meta-Llama-3.1-8B-Instruct": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
104 |
+
"Meta-Llama-3-70B-Instruct": "meta-llama/Meta-Llama-3-70B-Instruct",
|
105 |
+
"Meta-Llama-3-8B-Instruct": "meta-llama/Meta-Llama-3-8B-Instruct",
|
106 |
+
"C4ai-command-r-plus": "CohereForAI/c4ai-command-r-plus",
|
107 |
+
"Aya-23-35B": "CohereForAI/aya-23-35B",
|
108 |
+
"Zephyr-orpo-141b-A35b-v0.1": "HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1",
|
109 |
+
"Mixtral-8x7B-Instruct-v0.1": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
110 |
+
"Codestral-22B-v0.1": "mistralai/Codestral-22B-v0.1",
|
111 |
+
"Nous-Hermes-2-Mixtral-8x7B-DPO": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
112 |
+
"Yi-1.5-34B-Chat": "01-ai/Yi-1.5-34B-Chat",
|
113 |
+
"Gemma-2-27b-it": "google/gemma-2-27b-it",
|
114 |
+
"Meta-Llama-2-70B-Chat-HF": "meta-llama/Llama-2-70b-chat-hf",
|
115 |
+
"Meta-Llama-2-7B-Chat-HF": "meta-llama/Llama-2-7b-chat-hf",
|
116 |
+
"Meta-Llama-2-13B-Chat-HF": "meta-llama/Llama-2-13b-chat-hf",
|
117 |
+
"Mistral-7B-Instruct-v0.1": "mistralai/Mistral-7B-Instruct-v0.1",
|
118 |
+
"Mistral-7B-Instruct-v0.2": "mistralai/Mistral-7B-Instruct-v0.2",
|
119 |
+
"Mistral-7B-Instruct-v0.3": "mistralai/Mistral-7B-Instruct-v0.3",
|
120 |
+
"Gemma-1.1-7b-it": "google/gemma-1.1-7b-it",
|
121 |
+
"Gemma-1.1-2b-it": "google/gemma-1.1-2b-it",
|
122 |
+
"Zephyr-7B-Beta": "HuggingFaceH4/zephyr-7b-beta",
|
123 |
+
"Zephyr-7B-Alpha": "HuggingFaceH4/zephyr-7b-alpha",
|
124 |
+
"Phi-3-mini-128k-instruct": "microsoft/Phi-3-mini-128k-instruct",
|
125 |
+
"Phi-3-mini-4k-instruct": "microsoft/Phi-3-mini-4k-instruct",
|
126 |
+
}
|
127 |
+
|
128 |
+
# Function to reset conversation
|
129 |
+
def reset_conversation():
|
130 |
+
st.session_state.conversation = []
|
131 |
+
st.session_state.messages = []
|
132 |
+
|
133 |
+
# Function to process text with selected model
|
134 |
+
def process_text(user_name, text_input, selected_model, temp_values):
|
135 |
+
timestamp = datetime.now(pytz.utc).strftime('%Y-%m-%d %H:%M:%S %Z')
|
136 |
+
st.session_state.messages.append({"user": user_name, "message": text_input, "timestamp": timestamp})
|
137 |
+
|
138 |
+
with st.chat_message(user_name):
|
139 |
+
st.markdown(f"{user_name} ({timestamp}): {text_input}")
|
140 |
+
|
141 |
+
with st.chat_message("Assistant"):
|
142 |
+
if selected_model == "GPT-4o":
|
143 |
+
completion = client.chat.completions.create(
|
144 |
+
model=GPT4O_MODEL,
|
145 |
+
messages=[
|
146 |
+
{"role": "user", "content": m["message"]}
|
147 |
+
for m in st.session_state.messages
|
148 |
+
],
|
149 |
+
stream=True,
|
150 |
+
temperature=temp_values
|
151 |
+
)
|
152 |
+
return_text = st.write_stream(completion)
|
153 |
+
else:
|
154 |
+
try:
|
155 |
+
stream = hf_client.chat.completions.create(
|
156 |
+
model=model_links[selected_model],
|
157 |
+
messages=[
|
158 |
+
{"role": m["role"], "content": m["content"]}
|
159 |
+
for m in st.session_state.messages
|
160 |
+
],
|
161 |
+
temperature=temp_values,
|
162 |
+
stream=True,
|
163 |
+
max_tokens=3000,
|
164 |
+
)
|
165 |
+
return_text = st.write_stream(stream)
|
166 |
+
except Exception as e:
|
167 |
+
return_text = f"Error: {str(e)}"
|
168 |
+
st.error(return_text)
|
169 |
+
|
170 |
+
st.markdown(f"Assistant ({timestamp}): {return_text}")
|
171 |
+
filename = generate_filename(text_input, "md")
|
172 |
+
create_file(filename, text_input, return_text, user_name, timestamp)
|
173 |
+
st.session_state.messages.append({"user": "Assistant", "message": return_text, "timestamp": timestamp})
|
174 |
+
save_data()
|
175 |
+
|
176 |
+
# Function to process image (using GPT-4o)
|
177 |
+
def process_image(user_name, image_input, user_prompt):
|
178 |
+
image = Image.open(BytesIO(image_input))
|
179 |
+
base64_image = base64.b64encode(image_input).decode("utf-8")
|
180 |
+
|
181 |
+
response = client.chat.completions.create(
|
182 |
+
model=GPT4O_MODEL,
|
183 |
+
messages=[
|
184 |
+
{"role": "system", "content": "You are a helpful assistant that responds in Markdown."},
|
185 |
+
{"role": "user", "content": [
|
186 |
+
{"type": "text", "text": user_prompt},
|
187 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}
|
188 |
+
]}
|
189 |
+
],
|
190 |
+
temperature=0.0,
|
191 |
+
)
|
192 |
+
image_response = response.choices[0].message.content
|
193 |
+
|
194 |
+
timestamp = datetime.now(pytz.utc).strftime('%Y-%m-%d %H:%M:%S %Z')
|
195 |
+
st.session_state.messages.append({"user": user_name, "message": image_response, "timestamp": timestamp})
|
196 |
+
|
197 |
+
with st.chat_message(user_name):
|
198 |
+
st.image(image)
|
199 |
+
st.markdown(f"{user_name} ({timestamp}): {user_prompt}")
|
200 |
+
|
201 |
+
with st.chat_message("Assistant"):
|
202 |
+
st.markdown(image_response)
|
203 |
+
|
204 |
+
filename_md = generate_filename(user_prompt, "md")
|
205 |
+
create_file(filename_md, user_prompt, image_response, user_name, timestamp)
|
206 |
+
save_data()
|
207 |
+
return image_response
|
208 |
+
|
209 |
+
# Function to process audio (using GPT-4o for transcription)
|
210 |
+
def process_audio(user_name, audio_input, text_input):
|
211 |
+
if audio_input:
|
212 |
+
transcription = client.audio.transcriptions.create(
|
213 |
+
model="whisper-1",
|
214 |
+
file=audio_input,
|
215 |
+
)
|
216 |
+
timestamp = datetime.now(pytz.utc).strftime('%Y-%m-%d %H:%M:%S %Z')
|
217 |
+
st.session_state.messages.append({"user": user_name, "message": transcription.text, "timestamp": timestamp})
|
218 |
+
with st.chat_message(user_name):
|
219 |
+
st.markdown(f"{user_name} ({timestamp}): {transcription.text}")
|
220 |
+
with st.chat_message("Assistant"):
|
221 |
+
st.markdown(transcription.text)
|
222 |
+
filename = generate_filename(transcription.text, "wav")
|
223 |
+
create_file(filename, text_input, transcription.text, user_name, timestamp)
|
224 |
+
st.session_state.messages.append({"user": "Assistant", "message": transcription.text, "timestamp": timestamp})
|
225 |
+
save_data()
|
226 |
+
|
227 |
+
# Function to process video (using GPT-4o)
|
228 |
+
def process_video(user_name, video_input, user_prompt):
|
229 |
+
if isinstance(video_input, str):
|
230 |
+
with open(video_input, "rb") as video_file:
|
231 |
+
video_input = video_file.read()
|
232 |
+
base64Frames, audio_path = extract_video_frames(video_input)
|
233 |
+
transcript = process_audio_for_video(video_input)
|
234 |
+
response = client.chat.completions.create(
|
235 |
+
model=GPT4O_MODEL,
|
236 |
+
messages=[
|
237 |
+
{"role": "system", "content": "You are generating a video summary. Create a summary of the provided video and its transcript. Respond in Markdown"},
|
238 |
+
{"role": "user", "content": [
|
239 |
+
"These are the frames from the video.",
|
240 |
+
*map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames),
|
241 |
+
{"type": "text", "text": f"The audio transcription is: {transcript}"},
|
242 |
+
{"type": "text", "text": user_prompt}
|
243 |
+
]}
|
244 |
+
],
|
245 |
+
temperature=0,
|
246 |
+
)
|
247 |
+
video_response = response.choices[0].message.content
|
248 |
+
st.markdown(video_response)
|
249 |
+
timestamp = datetime.now(pytz.utc).strftime('%Y-%m-%d %H:%M:%S %Z')
|
250 |
+
filename_md = generate_filename(user_prompt, "md")
|
251 |
+
create_file(filename_md, user_prompt, video_response, user_name, timestamp)
|
252 |
+
st.session_state.messages.append({"user": user_name, "message": video_response, "timestamp": timestamp})
|
253 |
+
save_data()
|
254 |
+
return video_response
|
255 |
+
|
256 |
+
# Main function for each column
|
257 |
+
def main_column(column_name):
|
258 |
+
st.markdown(f"##### {column_name}")
|
259 |
+
selected_model = st.selectbox(f"Select Model for {column_name}", list(model_links.keys()), key=f"{column_name}_model")
|
260 |
+
temp_values = st.slider(f'Select a temperature value for {column_name}', 0.0, 1.0, (0.5), key=f"{column_name}_temp")
|
261 |
+
|
262 |
+
option = st.selectbox(f"Select an option for {column_name}", ("Text", "Image", "Audio", "Video"), key=f"{column_name}_option")
|
263 |
+
|
264 |
+
if option == "Text":
|
265 |
+
text_input = st.text_input(f"Enter your text for {column_name}:", key=f"{column_name}_text")
|
266 |
+
if text_input:
|
267 |
+
process_text(st.session_state.current_user['name'], text_input, selected_model, temp_values)
|
268 |
+
elif option == "Image":
|
269 |
+
text_input = st.text_input(f"Enter text prompt to use with Image context for {column_name}:", key=f"{column_name}_image_text")
|
270 |
+
uploaded_files = st.file_uploader(f"Upload images for {column_name}", type=["png", "jpg", "jpeg"], accept_multiple_files=True, key=f"{column_name}_image_upload")
|
271 |
+
for image_input in uploaded_files:
|
272 |
+
image_bytes = image_input.read()
|
273 |
+
process_
|
274 |
+
|
275 |
+
|
276 |
+
|
277 |
+
|
278 |
+
process_image(st.session_state.current_user['name'], image_bytes, text_input)
|
279 |
+
elif option == "Audio":
|
280 |
+
text_input = st.text_input(f"Enter text prompt to use with Audio context for {column_name}:", key=f"{column_name}_audio_text")
|
281 |
+
uploaded_files = st.file_uploader(f"Upload an audio file for {column_name}", type=["mp3", "wav"], accept_multiple_files=True, key=f"{column_name}_audio_upload")
|
282 |
+
for audio_input in uploaded_files:
|
283 |
+
process_audio(st.session_state.current_user['name'], audio_input, text_input)
|
284 |
+
elif option == "Video":
|
285 |
+
video_input = st.file_uploader(f"Upload a video file for {column_name}", type=["mp4"], key=f"{column_name}_video_upload")
|
286 |
+
text_input = st.text_input(f"Enter text prompt to use with Video context for {column_name}:", key=f"{column_name}_video_text")
|
287 |
+
if video_input and text_input:
|
288 |
+
process_video(st.session_state.current_user['name'], video_input, text_input)
|
289 |
+
|
290 |
+
# Main Streamlit app
|
291 |
+
st.title("Personalized Real-Time Chat")
|
292 |
+
|
293 |
+
# Sidebar
|
294 |
+
with st.sidebar:
|
295 |
+
st.title("User Info")
|
296 |
+
st.write(f"Current User: {st.session_state.current_user['name']}")
|
297 |
+
st.write(f"Browser: {st.session_state.current_user['browser']}")
|
298 |
+
|
299 |
+
new_name = st.text_input("Change your name:")
|
300 |
+
if st.button("Update Name"):
|
301 |
+
if new_name:
|
302 |
+
for user in st.session_state.users:
|
303 |
+
if user['id'] == st.session_state.current_user['id']:
|
304 |
+
user['name'] = new_name
|
305 |
+
st.session_state.current_user['name'] = new_name
|
306 |
+
save_data()
|
307 |
+
st.success(f"Name updated to {new_name}")
|
308 |
+
break
|
309 |
+
|
310 |
+
st.title("Active Users")
|
311 |
+
for user in st.session_state.users:
|
312 |
+
st.write(f"{user['name']} ({user['browser']})")
|
313 |
+
|
314 |
+
if st.button('Reset Chat'):
|
315 |
+
reset_conversation()
|
316 |
+
|
317 |
+
# Create two columns
|
318 |
+
col1, col2 = st.columns(2)
|
319 |
+
|
320 |
+
# Run main function for each column
|
321 |
+
with col1:
|
322 |
+
main_column("Column 1")
|
323 |
+
|
324 |
+
with col2:
|
325 |
+
main_column("Column 2")
|
326 |
+
|
327 |
+
# Function to generate filenames
|
328 |
+
def generate_filename(prompt, file_type):
|
329 |
+
central = pytz.timezone('US/Central')
|
330 |
+
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
|
331 |
+
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
|
332 |
+
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
|
333 |
+
return f"{safe_date_time}_{safe_prompt}.{file_type}"
|
334 |
+
|
335 |
+
# Function to create files
|
336 |
+
def create_file(filename, prompt, response, user_name, timestamp):
|
337 |
+
with open(filename, "w", encoding="utf-8") as f:
|
338 |
+
f.write(f"User: {user_name}\nTimestamp: {timestamp}\n\nPrompt:\n{prompt}\n\nResponse:\n{response}")
|
339 |
+
|
340 |
+
# Function to extract video frames
|
341 |
+
def extract_video_frames(video_path, seconds_per_frame=2):
|
342 |
+
base64Frames = []
|
343 |
+
video = cv2.VideoCapture(video_path)
|
344 |
+
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
345 |
+
fps = video.get(cv2.CAP_PROP_FPS)
|
346 |
+
frames_to_skip = int(fps * seconds_per_frame)
|
347 |
+
curr_frame = 0
|
348 |
+
while curr_frame < total_frames - 1:
|
349 |
+
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
|
350 |
+
success, frame = video.read()
|
351 |
+
if not success:
|
352 |
+
break
|
353 |
+
_, buffer = cv2.imencode(".jpg", frame)
|
354 |
+
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
|
355 |
+
curr_frame += frames_to_skip
|
356 |
+
video.release()
|
357 |
+
return base64Frames, None
|
358 |
+
|
359 |
+
# Function to process audio for video
|
360 |
+
def process_audio_for_video(video_input):
|
361 |
+
try:
|
362 |
+
transcription = client.audio.transcriptions.create(
|
363 |
+
model="whisper-1",
|
364 |
+
file=video_input,
|
365 |
+
)
|
366 |
+
return transcription.text
|
367 |
+
except:
|
368 |
+
return ''
|
369 |
+
|
370 |
+
# Run the Streamlit app
|
371 |
+
if __name__ == "__main__":
|
372 |
+
st.markdown("*Generated content may be inaccurate or false.*")
|
373 |
+
st.markdown("\n...")
|