Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import streamlit as st | |
import anthropic | |
import openai | |
import base64 | |
import cv2 | |
import glob | |
import json | |
import math | |
import os | |
import pytz | |
import random | |
import re | |
import requests | |
import textract | |
import time | |
import zipfile | |
import plotly.graph_objects as go | |
import streamlit.components.v1 as components | |
from datetime import datetime | |
from audio_recorder_streamlit import audio_recorder | |
from bs4 import BeautifulSoup | |
from collections import defaultdict, deque, Counter | |
from dotenv import load_dotenv | |
from gradio_client import Client | |
from huggingface_hub import InferenceClient | |
from io import BytesIO | |
from PIL import Image | |
from PyPDF2 import PdfReader | |
from urllib.parse import quote | |
from xml.etree import ElementTree as ET | |
from openai import OpenAI | |
import extra_streamlit_components as stx | |
from streamlit.runtime.scriptrunner import get_script_run_ctx | |
import asyncio | |
import edge_tts | |
from streamlit_marquee import streamlit_marquee | |
from concurrent.futures import ThreadPoolExecutor | |
from functools import partial | |
from typing import Dict, List, Optional, Tuple, Union | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 1. CORE CONFIGURATION & SETUP | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
st.set_page_config( | |
page_title="π²TalkingAIResearcherπ", | |
page_icon="π²π", | |
layout="wide", | |
initial_sidebar_state="auto", | |
menu_items={ | |
'Get Help': 'https://huggingface.co/awacke1', | |
'Report a bug': 'https://huggingface.co/spaces/awacke1', | |
'About': "π²TalkingAIResearcherπ" | |
} | |
) | |
load_dotenv() | |
# Available English voices for Edge TTS | |
EDGE_TTS_VOICES = [ | |
"en-US-AriaNeural", | |
"en-US-GuyNeural", | |
"en-US-JennyNeural", | |
"en-GB-SoniaNeural", | |
"en-GB-RyanNeural", | |
"en-AU-NatashaNeural", | |
"en-AU-WilliamNeural", | |
"en-CA-ClaraNeural", | |
"en-CA-LiamNeural" | |
] | |
# Session state initialization with default values | |
DEFAULT_SESSION_STATE = { | |
'marquee_settings': { | |
"background": "#1E1E1E", | |
"color": "#FFFFFF", | |
"font-size": "14px", | |
"animationDuration": "20s", | |
"width": "100%", | |
"lineHeight": "35px" | |
}, | |
'tts_voice': EDGE_TTS_VOICES[0], | |
'audio_format': 'mp3', | |
'transcript_history': [], | |
'chat_history': [], | |
'openai_model': "gpt-4o-2024-05-13", | |
'messages': [], | |
'last_voice_input': "", | |
'editing_file': None, | |
'edit_new_name': "", | |
'edit_new_content': "", | |
'viewing_prefix': None, | |
'should_rerun': False, | |
'old_val': None, | |
'last_query': "", | |
'marquee_content': "π Welcome to TalkingAIResearcher | π€ Your Research Assistant", | |
'enable_audio': False, | |
'enable_download': False, | |
'enable_claude': True, | |
'audio_cache': {}, | |
'paper_cache': {}, | |
'download_link_cache': {}, | |
'performance_metrics': defaultdict(list), | |
'operation_timings': defaultdict(float) | |
} | |
# Initialize session state | |
for key, value in DEFAULT_SESSION_STATE.items(): | |
if key not in st.session_state: | |
st.session_state[key] = value | |
# API Keys and Configuration | |
openai_api_key = os.getenv('OPENAI_API_KEY', "") | |
anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "") | |
xai_key = os.getenv('xai', "") | |
if 'OPENAI_API_KEY' in st.secrets: | |
openai_api_key = st.secrets['OPENAI_API_KEY'] | |
if 'ANTHROPIC_API_KEY' in st.secrets: | |
anthropic_key = st.secrets["ANTHROPIC_API_KEY"] | |
openai.api_key = openai_api_key | |
openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID')) | |
HF_KEY = os.getenv('HF_KEY') | |
API_URL = os.getenv('API_URL') | |
# File type emojis for display | |
FILE_EMOJIS = { | |
"md": "π", | |
"mp3": "π΅", | |
"wav": "π", | |
"pdf": "π", | |
"txt": "π", | |
"json": "π", | |
"csv": "π" | |
} | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 2. PERFORMANCE MONITORING & TIMING | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
class PerformanceTimer: | |
"""Context manager for timing operations with automatic logging.""" | |
def __init__(self, operation_name: str): | |
self.operation_name = operation_name | |
self.start_time = None | |
def __enter__(self): | |
self.start_time = time.time() | |
return self | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
if not exc_type: # Only log if no exception occurred | |
duration = time.time() - self.start_time | |
st.session_state['operation_timings'][self.operation_name] = duration | |
st.session_state['performance_metrics'][self.operation_name].append(duration) | |
def log_performance_metrics(): | |
"""Display performance metrics in the sidebar.""" | |
st.sidebar.markdown("### β±οΈ Performance Metrics") | |
metrics = st.session_state['operation_timings'] | |
if metrics: | |
total_time = sum(metrics.values()) | |
st.sidebar.write(f"**Total Processing Time:** {total_time:.2f}s") | |
# Create timing breakdown | |
for operation, duration in metrics.items(): | |
percentage = (duration / total_time) * 100 | |
st.sidebar.write(f"**{operation}:** {duration:.2f}s ({percentage:.1f}%)") | |
# Show timing history chart | |
if st.session_state['performance_metrics']: | |
history_data = [] | |
for op, times in st.session_state['performance_metrics'].items(): | |
if times: # Only show if we have timing data | |
avg_time = sum(times) / len(times) | |
history_data.append({"Operation": op, "Avg Time (s)": avg_time}) | |
if history_data: # Create chart if we have data | |
st.sidebar.markdown("### π Timing History") | |
chart_data = pd.DataFrame(history_data) | |
st.sidebar.bar_chart(chart_data.set_index("Operation")) | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 3. OPTIMIZED AUDIO GENERATION | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
def clean_for_speech(text: str) -> str: | |
"""Clean up text for TTS output with enhanced cleaning.""" | |
with PerformanceTimer("text_cleaning"): | |
# Remove markdown formatting | |
text = re.sub(r'#+ ', '', text) # Remove headers | |
text = re.sub(r'\[([^\]]+)\]\([^\)]+\)', r'\1', text) # Clean links | |
text = re.sub(r'[*_~`]', '', text) # Remove emphasis markers | |
# Remove code blocks | |
text = re.sub(r'```[\s\S]*?```', '', text) | |
text = re.sub(r'`[^`]*`', '', text) | |
# Clean up whitespace | |
text = re.sub(r'\s+', ' ', text) | |
text = text.replace("\n", " ") | |
text = text.replace("</s>", " ") | |
# Remove URLs | |
text = re.sub(r'https?://\S+', '', text) | |
text = re.sub(r'\(https?://[^\)]+\)', '', text) | |
# Final cleanup | |
text = text.strip() | |
return text | |
async def async_edge_tts_generate( | |
text: str, | |
voice: str, | |
rate: int = 0, | |
pitch: int = 0, | |
file_format: str = "mp3" | |
) -> Tuple[Optional[str], float]: | |
"""Asynchronous TTS generation with performance tracking and caching.""" | |
with PerformanceTimer("tts_generation") as timer: | |
# Clean and validate text | |
text = clean_for_speech(text) | |
if not text.strip(): | |
return None, 0 | |
# Check cache | |
cache_key = f"{text[:100]}_{voice}_{rate}_{pitch}_{file_format}" | |
if cache_key in st.session_state['audio_cache']: | |
return st.session_state['audio_cache'][cache_key], 0 | |
try: | |
# Generate audio | |
rate_str = f"{rate:+d}%" | |
pitch_str = f"{pitch:+d}Hz" | |
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str) | |
# Generate unique filename | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
filename = f"audio_{timestamp}_{random.randint(1000, 9999)}.{file_format}" | |
# Save audio file | |
await communicate.save(filename) | |
# Cache result | |
st.session_state['audio_cache'][cache_key] = filename | |
return filename, time.time() - timer.start_time | |
except Exception as e: | |
st.error(f"Error generating audio: {str(e)}") | |
return None, 0 | |
async def async_save_qa_with_audio( | |
question: str, | |
answer: str, | |
voice: Optional[str] = None | |
) -> Tuple[str, Optional[str], float, float]: | |
"""Asynchronously save Q&A to markdown and generate audio with timing.""" | |
voice = voice or st.session_state['tts_voice'] | |
with PerformanceTimer("qa_save") as timer: | |
# Save markdown | |
md_start = time.time() | |
combined_text = f"# Question\n{question}\n\n# Answer\n{answer}" | |
md_file = create_file(question, answer, "md") | |
md_time = time.time() - md_start | |
# Generate audio if enabled | |
audio_file = None | |
audio_time = 0 | |
if st.session_state['enable_audio']: | |
audio_text = f"{question}\n\nAnswer: {answer}" | |
audio_file, audio_time = await async_edge_tts_generate( | |
audio_text, | |
voice=voice, | |
file_format=st.session_state['audio_format'] | |
) | |
return md_file, audio_file, md_time, audio_time | |
def create_download_link_with_cache( | |
file_path: str, | |
file_type: str = "mp3" | |
) -> str: | |
"""Create download link with caching and error handling.""" | |
with PerformanceTimer("download_link_generation"): | |
# Check cache first | |
cache_key = f"dl_{file_path}" | |
if cache_key in st.session_state['download_link_cache']: | |
return st.session_state['download_link_cache'][cache_key] | |
try: | |
with open(file_path, "rb") as f: | |
b64 = base64.b64encode(f.read()).decode() | |
# Generate appropriate link based on file type | |
filename = os.path.basename(file_path) | |
if file_type == "mp3": | |
link = f'<a href="data:audio/mpeg;base64,{b64}" download="{filename}">π΅ Download {filename}</a>' | |
elif file_type == "wav": | |
link = f'<a href="data:audio/wav;base64,{b64}" download="{filename}">π Download {filename}</a>' | |
elif file_type == "md": | |
link = f'<a href="data:text/markdown;base64,{b64}" download="{filename}">π Download {filename}</a>' | |
else: | |
link = f'<a href="data:application/octet-stream;base64,{b64}" download="{filename}">β¬οΈ Download {filename}</a>' | |
# Cache and return | |
st.session_state['download_link_cache'][cache_key] = link | |
return link | |
except Exception as e: | |
st.error(f"Error creating download link: {str(e)}") | |
return "" | |
# --- | |
def display_voice_tab(): | |
"""Display voice input tab with TTS settings.""" | |
st.subheader("π€ Voice Input") | |
# Voice Settings Section | |
st.markdown("### π€ Voice Settings") | |
captionFemale='Top: πΈ **Aria** β πΆ **Jenny** β πΊ **Sonia** β π **Natasha** β π· **Clara**' | |
captionMale='Bottom: π **Guy** β π οΈ **Ryan** β π» **William** β π **Liam**' | |
st.sidebar.image('Group Picture - Voices.png', caption=captionFemale + ' - ' + captionMale) | |
st.sidebar.markdown(""" | |
# ποΈ Voice Character Agent Selector π | |
1. Female: | |
- πΈ **Aria** β Female: π The voice of elegance and creativity, perfect for soothing storytelling or inspiring ideas. | |
- πΆ **Jenny** β Female: π Sweet and friendly, sheβs the go-to for warm, conversational tones. | |
- πΊ **Sonia** β Female: π Bold and confident, ideal for commanding attention and delivering with flair. | |
- π **Natasha** β Female: β¨ Enigmatic and sophisticated, Natasha is great for a touch of mystery and charm. | |
- π· **Clara** β Female: π Cheerful and gentle, perfect for nurturing, empathetic conversations. | |
--- | |
2. Male: | |
- π **Guy** β Male: π© Sophisticated and versatile, a natural fit for clear and authoritative delivery. | |
- π οΈ **Ryan** β Male: π€ Down-to-earth and approachable, ideal for friendly and casual exchanges. | |
- π» **William** β Male: π Classic and refined, perfect for a scholarly or thoughtful tone. | |
- π **Liam** β Male: β‘ Energetic and upbeat, great for dynamic, engaging interactions. | |
""") | |
selected_voice = st.selectbox( | |
"Select TTS Voice:", | |
options=EDGE_TTS_VOICES, | |
index=EDGE_TTS_VOICES.index(st.session_state['tts_voice']) | |
) | |
# Audio Format Selection | |
st.markdown("### π Audio Format") | |
selected_format = st.radio( | |
"Choose Audio Format:", | |
options=["MP3", "WAV"], | |
index=0 | |
) | |
# Update session state if settings change | |
if selected_voice != st.session_state['tts_voice']: | |
st.session_state['tts_voice'] = selected_voice | |
st.rerun() | |
if selected_format.lower() != st.session_state['audio_format']: | |
st.session_state['audio_format'] = selected_format.lower() | |
st.rerun() | |
# Text Input Area | |
user_text = st.text_area("π¬ Message:", height=100) | |
user_text = user_text.strip().replace('\n', ' ') | |
# Send Button | |
if st.button("π¨ Send"): | |
process_voice_input(user_text) | |
# Chat History | |
st.subheader("π Chat History") | |
for c in st.session_state.chat_history: | |
st.write("**You:**", c["user"]) | |
st.write("**Response:**", c["claude"]) | |
def display_arxiv_tab(): | |
"""Display ArXiv search tab with options.""" | |
st.subheader("π Query ArXiv") | |
q = st.text_input("π Query:", key="arxiv_query") | |
# Options Section | |
st.markdown("### π Options") | |
col1, col2 = st.columns(2) | |
with col1: | |
vocal_summary = st.checkbox("π Short Audio", value=True, | |
key="option_vocal_summary") | |
extended_refs = st.checkbox("π Long Refs", value=False, | |
key="option_extended_refs") | |
with col2: | |
titles_summary = st.checkbox("π Titles Only", value=True, | |
key="option_titles_summary") | |
full_audio = st.checkbox("π Full Audio", value=False, | |
key="option_full_audio") | |
full_transcript = st.checkbox("π§Ύ Full Transcript", value=False, | |
key="option_full_transcript") | |
if q and st.button("π Run Search"): | |
st.session_state.last_query = q | |
result, timings = perform_ai_lookup( | |
q, | |
vocal_summary=vocal_summary, | |
extended_refs=extended_refs, | |
titles_summary=titles_summary, | |
full_audio=full_audio | |
) | |
if full_transcript: | |
create_file(q, result, "md") | |
def display_media_tab(): | |
"""Display media gallery tab with audio, images, and video.""" | |
st.header("πΈ Media Gallery") | |
# Create tabs for different media types | |
tabs = st.tabs(["π΅ Audio", "πΌ Images", "π₯ Video"]) | |
# Audio Files Tab | |
with tabs[0]: | |
st.subheader("π΅ Audio Files") | |
audio_files = glob.glob("*.mp3") + glob.glob("*.wav") | |
if audio_files: | |
for audio_file in audio_files: | |
with st.expander(os.path.basename(audio_file)): | |
st.audio(audio_file) | |
ext = os.path.splitext(audio_file)[1].replace('.', '') | |
dl_link = get_download_link(audio_file, file_type=ext) | |
st.markdown(dl_link, unsafe_allow_html=True) | |
else: | |
st.write("No audio files found.") | |
# Images Tab | |
with tabs[1]: | |
st.subheader("πΌ Image Files") | |
image_files = glob.glob("*.png") + glob.glob("*.jpg") + glob.glob("*.jpeg") | |
if image_files: | |
cols = st.slider("Columns:", 1, 5, 3, key="cols_images") | |
image_cols = st.columns(cols) | |
for i, img_file in enumerate(image_files): | |
with image_cols[i % cols]: | |
try: | |
img = Image.open(img_file) | |
st.image(img, use_column_width=True) | |
except Exception as e: | |
st.error(f"Error loading image {img_file}: {str(e)}") | |
else: | |
st.write("No images found.") | |
# Video Tab | |
with tabs[2]: | |
st.subheader("π₯ Video Files") | |
video_files = glob.glob("*.mp4") + glob.glob("*.mov") + glob.glob("*.avi") | |
if video_files: | |
for video_file in video_files: | |
with st.expander(os.path.basename(video_file)): | |
st.video(video_file) | |
else: | |
st.write("No videos found.") | |
def display_editor_tab(): | |
"""Display text editor tab with file management.""" | |
st.subheader("π Text Editor") | |
# File Management Section | |
st.markdown("### π File Management") | |
# File Selection | |
md_files = glob.glob("*.md") | |
selected_file = st.selectbox( | |
"Select file to edit:", | |
["New File"] + md_files, | |
key="file_selector" | |
) | |
# Edit Area | |
if selected_file == "New File": | |
new_filename = st.text_input("New filename (without extension):") | |
file_content = st.text_area("Content:", height=300) | |
if st.button("πΎ Save File"): | |
if new_filename: | |
try: | |
with open(f"{new_filename}.md", 'w', encoding='utf-8') as f: | |
f.write(file_content) | |
st.success(f"File {new_filename}.md saved successfully!") | |
st.session_state.should_rerun = True | |
except Exception as e: | |
st.error(f"Error saving file: {str(e)}") | |
else: | |
st.warning("Please enter a filename.") | |
else: | |
try: | |
# Load existing file content | |
with open(selected_file, 'r', encoding='utf-8') as f: | |
file_content = f.read() | |
# Edit existing file | |
edited_content = st.text_area( | |
"Edit content:", | |
value=file_content, | |
height=300 | |
) | |
col1, col2 = st.columns(2) | |
with col1: | |
if st.button("πΎ Save Changes"): | |
try: | |
with open(selected_file, 'w', encoding='utf-8') as f: | |
f.write(edited_content) | |
st.success("Changes saved successfully!") | |
except Exception as e: | |
st.error(f"Error saving changes: {str(e)}") | |
with col2: | |
if st.button("π Delete File"): | |
try: | |
os.remove(selected_file) | |
st.success(f"File {selected_file} deleted successfully!") | |
st.session_state.should_rerun = True | |
except Exception as e: | |
st.error(f"Error deleting file: {str(e)}") | |
except Exception as e: | |
st.error(f"Error loading file {selected_file}: {str(e)}") | |
def display_settings_tab(): | |
"""Display application settings tab.""" | |
st.subheader("βοΈ Settings") | |
# General Settings | |
st.markdown("### π§ General Settings") | |
# Theme Selection | |
theme = st.selectbox( | |
"Color Theme:", | |
["Dark", "Light", "Custom"], | |
index=0 | |
) | |
if theme == "Custom": | |
st.color_picker("Primary Color:", "#1E1E1E") | |
st.color_picker("Secondary Color:", "#2D2D2D") | |
# Performance Settings | |
st.markdown("### β‘ Performance Settings") | |
# Cache Settings | |
cache_size = st.slider( | |
"Maximum Cache Size (MB):", | |
0, 1000, 100 | |
) | |
if st.button("Clear Cache"): | |
st.session_state['audio_cache'] = {} | |
st.session_state['paper_cache'] = {} | |
st.session_state['download_link_cache'] = {} | |
st.success("Cache cleared successfully!") | |
# API Settings | |
st.markdown("### π API Settings") | |
# Show/hide API keys | |
show_keys = st.checkbox("Show API Keys") | |
if show_keys: | |
st.text_input("OpenAI API Key:", value=openai_api_key) | |
st.text_input("Anthropic API Key:", value=anthropic_key) | |
# Save Settings | |
if st.button("πΎ Save Settings"): | |
st.success("Settings saved successfully!") | |
st.session_state.should_rerun = True | |
def get_download_link(file: str, file_type: str = "zip") -> str: | |
""" | |
Convert a file to base64 and return an HTML link for download. | |
Supports multiple file types with appropriate MIME types. | |
""" | |
try: | |
with open(file, "rb") as f: | |
b64 = base64.b64encode(f.read()).decode() | |
# Get filename for display | |
filename = os.path.basename(file) | |
# Define MIME types and emoji icons for different file types | |
mime_types = { | |
"zip": ("application/zip", "π"), | |
"mp3": ("audio/mpeg", "π΅"), | |
"wav": ("audio/wav", "π"), | |
"md": ("text/markdown", "π"), | |
"pdf": ("application/pdf", "π"), | |
"txt": ("text/plain", "π"), | |
"json": ("application/json", "π"), | |
"csv": ("text/csv", "π"), | |
"png": ("image/png", "πΌ"), | |
"jpg": ("image/jpeg", "πΌ"), | |
"jpeg": ("image/jpeg", "πΌ") | |
} | |
# Get MIME type and emoji for file | |
mime_type, emoji = mime_types.get( | |
file_type.lower(), | |
("application/octet-stream", "β¬οΈ") | |
) | |
# Create download link with appropriate MIME type | |
link = f'<a href="data:{mime_type};base64,{b64}" download="{filename}">{emoji} Download {filename}</a>' | |
return link | |
except FileNotFoundError: | |
return f"<p style='color: red'>β File not found: {file}</p>" | |
except Exception as e: | |
return f"<p style='color: red'>β Error creating download link: {str(e)}</p>" | |
def play_and_download_audio(file_path: str, file_type: str = "mp3"): | |
""" | |
Display audio player and download link for audio file. | |
Includes error handling and file validation. | |
""" | |
if not file_path: | |
st.warning("No audio file provided.") | |
return | |
if not os.path.exists(file_path): | |
st.error(f"Audio file not found: {file_path}") | |
return | |
try: | |
# Display audio player | |
st.audio(file_path) | |
# Create and display download link | |
dl_link = get_download_link(file_path, file_type=file_type) | |
st.markdown(dl_link, unsafe_allow_html=True) | |
except Exception as e: | |
st.error(f"Error playing audio: {str(e)}") | |
def get_file_info(file_path: str) -> dict: | |
""" | |
Get detailed information about a file. | |
Returns dictionary with size, modification time, and other metadata. | |
""" | |
try: | |
stats = os.stat(file_path) | |
# Get basic file information | |
info = { | |
'name': os.path.basename(file_path), | |
'path': file_path, | |
'size': stats.st_size, | |
'modified': datetime.fromtimestamp(stats.st_mtime), | |
'created': datetime.fromtimestamp(stats.st_ctime), | |
'type': os.path.splitext(file_path)[1].lower().strip('.'), | |
} | |
# Add formatted size | |
if info['size'] < 1024: | |
info['size_fmt'] = f"{info['size']} B" | |
elif info['size'] < 1024 * 1024: | |
info['size_fmt'] = f"{info['size']/1024:.1f} KB" | |
else: | |
info['size_fmt'] = f"{info['size']/(1024*1024):.1f} MB" | |
# Add formatted dates | |
info['modified_fmt'] = info['modified'].strftime("%Y-%m-%d %H:%M:%S") | |
info['created_fmt'] = info['created'].strftime("%Y-%m-%d %H:%M:%S") | |
return info | |
except Exception as e: | |
st.error(f"Error getting file info: {str(e)}") | |
return None | |
def sanitize_filename(filename: str) -> str: | |
""" | |
Clean and sanitize a filename to ensure it's safe for filesystem. | |
Removes/replaces unsafe characters and enforces length limits. | |
""" | |
# Remove or replace unsafe characters | |
filename = re.sub(r'[<>:"/\\|?*]', '_', filename) | |
# Remove leading/trailing spaces and dots | |
filename = filename.strip('. ') | |
# Limit length (reserving space for extension) | |
max_length = 255 | |
name, ext = os.path.splitext(filename) | |
if len(filename) > max_length: | |
return name[:(max_length-len(ext))] + ext | |
return filename | |
def create_file_with_metadata(filename: str, content: str, metadata: dict = None): | |
""" | |
Create a file with optional metadata header. | |
Useful for storing additional information with files. | |
""" | |
try: | |
# Sanitize filename | |
safe_filename = sanitize_filename(filename) | |
# Ensure directory exists | |
os.makedirs(os.path.dirname(safe_filename) or '.', exist_ok=True) | |
# Prepare content with metadata | |
if metadata: | |
metadata_str = json.dumps(metadata, indent=2) | |
full_content = f"""--- | |
{metadata_str} | |
--- | |
{content}""" | |
else: | |
full_content = content | |
# Write file | |
with open(safe_filename, 'w', encoding='utf-8') as f: | |
f.write(full_content) | |
return safe_filename | |
except Exception as e: | |
st.error(f"Error creating file: {str(e)}") | |
return None | |
def read_file_with_metadata(filename: str) -> tuple: | |
""" | |
Read a file and extract any metadata header. | |
Returns tuple of (content, metadata). | |
""" | |
try: | |
with open(filename, 'r', encoding='utf-8') as f: | |
content = f.read() | |
# Check for metadata section | |
if content.startswith('---\n'): | |
# Find end of metadata section | |
end_meta = content.find('\n---\n', 4) | |
if end_meta != -1: | |
try: | |
metadata = json.loads(content[4:end_meta]) | |
content = content[end_meta+5:] | |
return content, metadata | |
except json.JSONDecodeError: | |
pass | |
return content, None | |
except Exception as e: | |
st.error(f"Error reading file: {str(e)}") | |
return None, None | |
def archive_files(file_paths: list, archive_name: str = None) -> str: | |
""" | |
Create a zip archive containing the specified files. | |
Returns path to created archive. | |
""" | |
try: | |
# Generate archive name if not provided | |
if not archive_name: | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
archive_name = f"archive_{timestamp}.zip" | |
# Create zip file | |
with zipfile.ZipFile(archive_name, 'w', zipfile.ZIP_DEFLATED) as zf: | |
for file_path in file_paths: | |
if os.path.exists(file_path): | |
zf.write(file_path, os.path.basename(file_path)) | |
return archive_name | |
except Exception as e: | |
st.error(f"Error creating archive: {str(e)}") | |
return None | |
def list_files_by_type(directory: str = ".", | |
extensions: list = None, | |
recursive: bool = False) -> dict: | |
""" | |
List files in directory filtered by extension. | |
Returns dict grouping files by type. | |
""" | |
try: | |
if extensions is None: | |
extensions = ['md', 'mp3', 'wav', 'pdf', 'txt', 'json', 'csv'] | |
files = {} | |
pattern = "**/*" if recursive else "*" | |
for ext in extensions: | |
glob_pattern = f"{pattern}.{ext}" | |
matches = glob.glob(os.path.join(directory, glob_pattern), | |
recursive=recursive) | |
if matches: | |
files[ext] = matches | |
return files | |
except Exception as e: | |
st.error(f"Error listing files: {str(e)}") | |
return {} | |
def get_central_time() -> datetime: | |
"""Get current time in US Central timezone.""" | |
central = pytz.timezone('US/Central') | |
return datetime.now(central) | |
def format_timestamp_prefix() -> str: | |
"""Generate timestamp prefix in format MM_dd_yy_hh_mm_AM/PM.""" | |
ct = get_central_time() | |
return ct.strftime("%m_%d_%y_%I_%M_%p") | |
def get_formatted_time(dt: datetime = None, | |
timezone: str = 'US/Central', | |
include_timezone: bool = True, | |
include_seconds: bool = False) -> str: | |
""" | |
Format a datetime object with specified options. | |
If no datetime is provided, uses current time. | |
""" | |
if dt is None: | |
tz = pytz.timezone(timezone) | |
dt = datetime.now(tz) | |
elif dt.tzinfo is None: | |
tz = pytz.timezone(timezone) | |
dt = tz.localize(dt) | |
format_string = "%Y-%m-%d %I:%M" | |
if include_seconds: | |
format_string += ":%S" | |
format_string += " %p" | |
if include_timezone: | |
format_string += " %Z" | |
return dt.strftime(format_string) | |
def parse_timestamp(timestamp_str: str, | |
timezone: str = 'US/Central') -> Optional[datetime]: | |
""" | |
Parse a timestamp string in various formats. | |
Returns timezone-aware datetime object. | |
""" | |
try: | |
# Try different format patterns | |
patterns = [ | |
"%m_%d_%y_%I_%M_%p", # Standard app format | |
"%Y-%m-%d %I:%M %p", # Common 12-hour format | |
"%Y-%m-%d %H:%M", # 24-hour format | |
"%m/%d/%y %I:%M %p", # US date format | |
"%d/%m/%y %I:%M %p" # European date format | |
] | |
dt = None | |
for pattern in patterns: | |
try: | |
dt = datetime.strptime(timestamp_str, pattern) | |
break | |
except ValueError: | |
continue | |
if dt is None: | |
raise ValueError(f"Could not parse timestamp: {timestamp_str}") | |
# Add timezone if not present | |
if dt.tzinfo is None: | |
tz = pytz.timezone(timezone) | |
dt = tz.localize(dt) | |
return dt | |
except Exception as e: | |
st.error(f"Error parsing timestamp: {str(e)}") | |
return None | |
def get_time_ago(dt: datetime) -> str: | |
""" | |
Convert datetime to human-readable "time ago" format. | |
E.g., "2 hours ago", "3 days ago", etc. | |
""" | |
try: | |
now = datetime.now(dt.tzinfo) | |
diff = now - dt | |
seconds = diff.total_seconds() | |
if seconds < 60: | |
return "just now" | |
elif seconds < 3600: | |
minutes = int(seconds / 60) | |
return f"{minutes} minute{'s' if minutes != 1 else ''} ago" | |
elif seconds < 86400: | |
hours = int(seconds / 3600) | |
return f"{hours} hour{'s' if hours != 1 else ''} ago" | |
elif seconds < 604800: | |
days = int(seconds / 86400) | |
return f"{days} day{'s' if days != 1 else ''} ago" | |
elif seconds < 2592000: | |
weeks = int(seconds / 604800) | |
return f"{weeks} week{'s' if weeks != 1 else ''} ago" | |
elif seconds < 31536000: | |
months = int(seconds / 2592000) | |
return f"{months} month{'s' if months != 1 else ''} ago" | |
else: | |
years = int(seconds / 31536000) | |
return f"{years} year{'s' if years != 1 else ''} ago" | |
except Exception as e: | |
st.error(f"Error calculating time ago: {str(e)}") | |
return "unknown time ago" | |
def format_duration(seconds: float) -> str: | |
""" | |
Format a duration in seconds to human-readable string. | |
E.g., "2m 30s", "1h 15m", etc. | |
""" | |
try: | |
if seconds < 0: | |
return "invalid duration" | |
# Handle special cases | |
if seconds < 1: | |
return f"{seconds * 1000:.0f}ms" | |
if seconds < 60: | |
return f"{seconds:.1f}s" | |
# Calculate hours, minutes, seconds | |
hours = int(seconds // 3600) | |
minutes = int((seconds % 3600) // 60) | |
secs = seconds % 60 | |
# Build duration string | |
parts = [] | |
if hours > 0: | |
parts.append(f"{hours}h") | |
if minutes > 0: | |
parts.append(f"{minutes}m") | |
if secs > 0 and hours == 0: # Only show seconds if less than an hour | |
parts.append(f"{secs:.1f}s") | |
return " ".join(parts) | |
except Exception as e: | |
st.error(f"Error formatting duration: {str(e)}") | |
return "unknown duration" | |
async def create_paper_audio_files(papers: List[Dict], input_question: str): | |
"""Generate audio files for papers asynchronously with improved naming.""" | |
with PerformanceTimer("paper_audio_generation"): | |
tasks = [] | |
for paper in papers: | |
try: | |
# Prepare text for audio generation | |
audio_text = f"{paper['title']} by {paper['authors']}. {paper['summary']}" | |
audio_text = clean_for_speech(audio_text) | |
# Create sanitized title for filename | |
safe_title = paper['title'].lower() | |
safe_title = re.sub(r'[^\w\s-]', '', safe_title) # Remove special chars | |
safe_title = re.sub(r'\s+', '_', safe_title) # Replace spaces with underscores | |
safe_title = safe_title[:100] # Limit length | |
# Generate timestamp | |
timestamp = format_timestamp_prefix() | |
# Create filename with timestamp and title | |
filename = f"{timestamp}_{safe_title}.{st.session_state['audio_format']}" | |
# Create task for audio generation | |
async def generate_audio(text, filename): | |
rate_str = "0%" | |
pitch_str = "0Hz" | |
communicate = edge_tts.Communicate(text, st.session_state['tts_voice']) | |
await communicate.save(filename) | |
return filename | |
task = generate_audio(audio_text, filename) | |
tasks.append((paper, task, filename)) | |
except Exception as e: | |
st.warning(f"Error preparing audio for paper {paper['title']}: {str(e)}") | |
continue | |
# Process all audio generation tasks concurrently | |
for paper, task, filename in tasks: | |
try: | |
audio_file = await task | |
if audio_file: | |
paper['full_audio'] = audio_file | |
if st.session_state['enable_download']: | |
paper['download_base64'] = create_download_link_with_cache( | |
audio_file, | |
st.session_state['audio_format'] | |
) | |
except Exception as e: | |
st.warning(f"Error generating audio for paper {paper['title']}: {str(e)}") | |
paper['full_audio'] = None | |
paper['download_base64'] = '' | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 4. PAPER PROCESSING & DISPLAY | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
def parse_arxiv_refs(ref_text: str) -> List[Dict[str, str]]: | |
"""Parse arxiv references with improved error handling.""" | |
if not ref_text: | |
return [] | |
with PerformanceTimer("parse_refs"): | |
results = [] | |
current_paper = {} | |
lines = ref_text.split('\n') | |
for i, line in enumerate(lines): | |
try: | |
if line.count('|') == 2: | |
# Found a new paper line | |
if current_paper: | |
results.append(current_paper) | |
if len(results) >= 20: # Limit to 20 papers | |
break | |
# Parse header parts | |
header_parts = line.strip('* ').split('|') | |
date = header_parts[0].strip() | |
title = header_parts[1].strip() | |
url_match = re.search(r'(https://arxiv.org/\S+)', line) | |
url = url_match.group(1) if url_match else f"paper_{len(results)}" | |
current_paper = { | |
'date': date, | |
'title': title, | |
'url': url, | |
'authors': '', | |
'summary': '', | |
'full_audio': None, | |
'download_base64': '', | |
} | |
elif current_paper: | |
# Add content to current paper | |
line = line.strip('* ') | |
if not current_paper['authors']: | |
current_paper['authors'] = line | |
else: | |
if current_paper['summary']: | |
current_paper['summary'] += ' ' + line | |
else: | |
current_paper['summary'] = line | |
except Exception as e: | |
st.warning(f"Error parsing line {i}: {str(e)}") | |
continue | |
# Add final paper if exists | |
if current_paper: | |
results.append(current_paper) | |
return results[:20] # Ensure we don't exceed 20 papers | |
async def create_paper_audio_files(papers: List[Dict], input_question: str): | |
"""Generate audio files for papers asynchronously with progress tracking.""" | |
with PerformanceTimer("paper_audio_generation"): | |
tasks = [] | |
for paper in papers: | |
try: | |
# Prepare text for audio generation | |
audio_text = f"{paper['title']} by {paper['authors']}. {paper['summary']}" | |
audio_text = clean_for_speech(audio_text) | |
# Create task for audio generation | |
task = async_edge_tts_generate( | |
audio_text, | |
voice=st.session_state['tts_voice'], | |
file_format=st.session_state['audio_format'] | |
) | |
tasks.append((paper, task)) | |
except Exception as e: | |
st.warning(f"Error preparing audio for paper {paper['title']}: {str(e)}") | |
continue | |
# Process all audio generation tasks concurrently | |
for paper, task in tasks: | |
try: | |
audio_file, gen_time = await task | |
if audio_file: | |
paper['full_audio'] = audio_file | |
if st.session_state['enable_download']: | |
paper['download_base64'] = create_download_link_with_cache( | |
audio_file, | |
st.session_state['audio_format'] | |
) | |
except Exception as e: | |
st.warning(f"Error generating audio for paper {paper['title']}: {str(e)}") | |
paper['full_audio'] = None | |
paper['download_base64'] = '' | |
def initialize_marquee_settings(): | |
"""Initialize default marquee settings if not present in session state.""" | |
if 'marquee_settings' not in st.session_state: | |
st.session_state['marquee_settings'] = { | |
"background": "#1E1E1E", | |
"color": "#FFFFFF", | |
"font-size": "14px", | |
"animationDuration": "20s", | |
"width": "100%", | |
"lineHeight": "35px" | |
} | |
def get_marquee_settings(): | |
"""Get current marquee settings, initializing if needed.""" | |
initialize_marquee_settings() | |
return st.session_state['marquee_settings'] | |
def update_marquee_settings_ui(): | |
"""Add color pickers & sliders for marquee configuration in sidebar.""" | |
st.sidebar.markdown("### π― Marquee Settings") | |
# Create two columns for settings | |
cols = st.sidebar.columns(2) | |
# Column 1: Color settings | |
with cols[0]: | |
# Background color picker | |
bg_color = st.color_picker( | |
"π¨ Background", | |
st.session_state['marquee_settings']["background"], | |
key="bg_color_picker" | |
) | |
# Text color picker | |
text_color = st.color_picker( | |
"βοΈ Text Color", | |
st.session_state['marquee_settings']["color"], | |
key="text_color_picker" | |
) | |
# Column 2: Size and speed settings | |
with cols[1]: | |
# Font size slider | |
font_size = st.slider( | |
"π Font Size", | |
10, 24, 14, | |
key="font_size_slider" | |
) | |
# Animation duration slider | |
duration = st.slider( | |
"β±οΈ Animation Speed", | |
1, 20, 20, | |
key="duration_slider" | |
) | |
# Update session state with new settings | |
st.session_state['marquee_settings'].update({ | |
"background": bg_color, | |
"color": text_color, | |
"font-size": f"{font_size}px", | |
"animationDuration": f"{duration}s" | |
}) | |
def display_marquee(text: str, settings: dict, key_suffix: str = ""): | |
"""Show marquee text with specified style settings.""" | |
# Truncate long text to prevent performance issues | |
truncated_text = text[:280] + "..." if len(text) > 280 else text | |
# Display the marquee | |
streamlit_marquee( | |
content=truncated_text, | |
**settings, | |
key=f"marquee_{key_suffix}" | |
) | |
# Add spacing after marquee | |
st.write("") | |
def create_paper_links_md(papers: list) -> str: | |
"""Creates a minimal markdown file linking to each paper's arxiv URL.""" | |
lines = ["# Paper Links\n"] | |
for i, p in enumerate(papers, start=1): | |
lines.append(f"{i}. **{p['title']}** β [Arxiv]({p['url']})") | |
return "\n".join(lines) | |
def apply_custom_styling(): | |
"""Apply custom CSS styling to the app.""" | |
st.markdown(""" | |
<style> | |
.main { | |
background: linear-gradient(to right, #1a1a1a, #2d2d2d); | |
color: #fff; | |
} | |
.stMarkdown { | |
font-family: 'Helvetica Neue', sans-serif; | |
} | |
.stButton>button { | |
margin-right: 0.5rem; | |
} | |
.streamlit-marquee { | |
margin: 1rem 0; | |
border-radius: 4px; | |
} | |
.st-emotion-cache-1y4p8pa { | |
padding: 1rem; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
def display_performance_metrics(timings: dict): | |
"""Display performance metrics with visualizations.""" | |
st.sidebar.markdown("### β±οΈ Performance Metrics") | |
# Calculate total time | |
total_time = sum(timings.values()) | |
st.sidebar.write(f"**Total Processing Time:** {total_time:.2f}s") | |
# Show breakdown of operations | |
st.sidebar.markdown("#### Operation Breakdown") | |
for operation, duration in timings.items(): | |
percentage = (duration / total_time) * 100 if total_time > 0 else 0 | |
st.sidebar.write(f"**{operation}:** {duration:.2f}s ({percentage:.1f}%)") | |
# Create a progress bar for visual representation | |
st.sidebar.progress(percentage / 100) | |
def display_papers(papers: List[Dict], marquee_settings: Dict): | |
"""Display paper information with enhanced visualization.""" | |
with PerformanceTimer("paper_display"): | |
st.write("## π Research Papers") | |
# Create tabs for different views | |
tab1, tab2 = st.tabs(["π List View", "π Grid View"]) | |
with tab1: | |
for i, paper in enumerate(papers, start=1): | |
# Create marquee for paper title | |
marquee_text = f"π {paper['title']} | π€ {paper['authors'][:120]}" | |
display_marquee(marquee_text, marquee_settings, key_suffix=f"paper_{i}") | |
# Paper details expander | |
with st.expander(f"{i}. π {paper['title']}", expanded=True): | |
# Create PDF link | |
pdf_url = paper['url'].replace('/abs/', '/pdf/') | |
# Display paper information | |
st.markdown(f""" | |
**Date:** {paper['date']} | |
**Title:** {paper['title']} | |
**Links:** π [Abstract]({paper['url']}) | π [PDF]({pdf_url}) | |
""") | |
st.markdown(f"**Authors:** {paper['authors']}") | |
st.markdown(f"**Summary:** {paper['summary']}") | |
# Audio player and download if available | |
if paper.get('full_audio'): | |
st.write("π§ Paper Audio Summary") | |
st.audio(paper['full_audio']) | |
if paper['download_base64']: | |
st.markdown(paper['download_base64'], unsafe_allow_html=True) | |
with tab2: | |
# Create a grid layout of papers | |
cols = st.columns(3) | |
for i, paper in enumerate(papers): | |
with cols[i % 3]: | |
st.markdown(f""" | |
### π {paper['title'][:50]}... | |
**Date:** {paper['date']} | |
[Abstract]({paper['url']}) | [PDF]({paper['url'].replace('/abs/', '/pdf/')}) | |
""") | |
if paper.get('full_audio'): | |
st.audio(paper['full_audio']) | |
def display_papers_in_sidebar(papers: List[Dict]): | |
"""Display paper listing in sidebar with lazy loading.""" | |
with PerformanceTimer("sidebar_display"): | |
st.sidebar.title("π Papers Overview") | |
# Add filter options | |
filter_date = st.sidebar.date_input("Filter by date:", None) | |
search_term = st.sidebar.text_input("Search papers:", "") | |
# Filter papers based on criteria | |
filtered_papers = papers | |
if filter_date: | |
filtered_papers = [p for p in filtered_papers | |
if filter_date.strftime("%Y-%m-%d") in p['date']] | |
if search_term: | |
search_lower = search_term.lower() | |
filtered_papers = [p for p in filtered_papers | |
if search_lower in p['title'].lower() | |
or search_lower in p['authors'].lower()] | |
# Display filtered papers | |
for i, paper in enumerate(filtered_papers, start=1): | |
paper_key = f"paper_{paper['url']}" | |
if paper_key not in st.session_state: | |
st.session_state[paper_key] = False | |
with st.sidebar.expander(f"{i}. {paper['title'][:50]}...", expanded=False): | |
# Paper metadata | |
st.markdown(f"**Date:** {paper['date']}") | |
# Links | |
pdf_url = paper['url'].replace('/abs/', '/pdf/') | |
st.markdown(f"π [Abstract]({paper['url']}) | π [PDF]({pdf_url})") | |
# Preview of authors and summary | |
st.markdown(f"**Authors:** {paper['authors'][:100]}...") | |
if paper['summary']: | |
st.markdown(f"**Summary:** {paper['summary'][:200]}...") | |
# Audio controls | |
if paper['full_audio']: | |
if st.button("π΅ Load Audio", key=f"btn_{paper_key}"): | |
st.session_state[paper_key] = True | |
if st.session_state[paper_key]: | |
st.audio(paper['full_audio']) | |
if paper['download_base64']: | |
st.markdown(paper['download_base64'], unsafe_allow_html=True) | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 5. FILE MANAGEMENT & HISTORY | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
def create_file(prompt: str, response: str, file_type: str = "md") -> str: | |
"""Create a file with proper naming and error handling.""" | |
with PerformanceTimer("file_creation"): | |
try: | |
# Generate filename | |
filename = generate_filename(prompt.strip(), response.strip(), file_type) | |
# Ensure directory exists | |
os.makedirs("generated_files", exist_ok=True) | |
filepath = os.path.join("generated_files", filename) | |
# Write content | |
with open(filepath, 'w', encoding='utf-8') as f: | |
if file_type == "md": | |
f.write(f"# Query\n{prompt}\n\n# Response\n{response}") | |
else: | |
f.write(f"{prompt}\n\n{response}") | |
return filepath | |
except Exception as e: | |
st.error(f"Error creating file: {str(e)}") | |
return "" | |
def get_high_info_terms(text: str, top_n: int = 10) -> List[str]: | |
"""Extract most informative terms from text.""" | |
# Common English stop words to filter out | |
stop_words = set([ | |
'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', | |
'for', 'of', 'with', 'by', 'from', 'up', 'about', 'into', 'over', | |
'after', 'the', 'this', 'that', 'these', 'those', 'what', 'which' | |
]) | |
# Extract words and bi-grams | |
words = re.findall(r'\b\w+(?:-\w+)*\b', text.lower()) | |
bi_grams = [' '.join(pair) for pair in zip(words, words[1:])] | |
# Combine and filter terms | |
combined = words + bi_grams | |
filtered = [term for term in combined | |
if term not in stop_words | |
and len(term.split()) <= 2 | |
and len(term) > 3] | |
# Count and return top terms | |
counter = Counter(filtered) | |
return [term for term, freq in counter.most_common(top_n)] | |
def clean_text_for_filename(text: str) -> str: | |
"""Clean text for use in filenames.""" | |
# Remove special characters | |
text = text.lower() | |
text = re.sub(r'[^\w\s-]', '', text) | |
# Remove common unhelpful words | |
stop_words = set([ | |
'the', 'and', 'for', 'with', 'this', 'that', 'what', 'which', | |
'where', 'when', 'why', 'how', 'who', 'whom', 'whose', 'ai', | |
'library', 'function', 'method', 'class', 'object', 'variable' | |
]) | |
words = text.split() | |
filtered = [w for w in words if len(w) > 3 and w not in stop_words] | |
return '_'.join(filtered)[:200] | |
def generate_filename(prompt: str, response: str, file_type: str = "md", | |
max_length: int = 200) -> str: | |
"""Generate descriptive filename from content.""" | |
# Get timestamp prefix | |
prefix = format_timestamp_prefix() + "_" | |
# Extract informative terms | |
combined_text = (prompt + " " + response)[:500] | |
info_terms = get_high_info_terms(combined_text, top_n=5) | |
# Get content snippet | |
snippet = (prompt[:40] + " " + response[:40]).strip() | |
snippet_cleaned = clean_text_for_filename(snippet) | |
# Combine and deduplicate parts | |
name_parts = info_terms + [snippet_cleaned] | |
seen = set() | |
unique_parts = [] | |
for part in name_parts: | |
if part not in seen: | |
seen.add(part) | |
unique_parts.append(part) | |
# Create final filename | |
full_name = '_'.join(unique_parts).strip('_') | |
leftover_chars = max_length - len(prefix) - len(file_type) - 1 | |
if len(full_name) > leftover_chars: | |
full_name = full_name[:leftover_chars] | |
return f"{prefix}{full_name}.{file_type}" | |
def create_zip_of_files(md_files: List[str], mp3_files: List[str], | |
wav_files: List[str], input_question: str) -> Optional[str]: | |
"""Create zip archive of files with optimization.""" | |
with PerformanceTimer("zip_creation"): | |
# Filter out readme and empty files | |
md_files = [f for f in md_files | |
if os.path.basename(f).lower() != 'readme.md' | |
and os.path.getsize(f) > 0] | |
all_files = md_files + mp3_files + wav_files | |
if not all_files: | |
return None | |
try: | |
# Generate zip name | |
all_content = [] | |
for f in all_files: | |
if f.endswith('.md'): | |
with open(f, 'r', encoding='utf-8') as file: | |
all_content.append(file.read()) | |
elif f.endswith(('.mp3', '.wav')): | |
basename = os.path.splitext(os.path.basename(f))[0] | |
all_content.append(basename.replace('_', ' ')) | |
all_content.append(input_question) | |
combined_content = " ".join(all_content) | |
info_terms = get_high_info_terms(combined_content, top_n=10) | |
timestamp = format_timestamp_prefix() | |
name_text = '-'.join(term for term in info_terms[:5]) | |
zip_name = f"archive_{timestamp}_{name_text[:50]}.zip" | |
# Create zip file | |
with zipfile.ZipFile(zip_name, 'w', zipfile.ZIP_DEFLATED) as z: | |
for f in all_files: | |
z.write(f, os.path.basename(f)) | |
return zip_name | |
except Exception as e: | |
st.error(f"Error creating zip archive: {str(e)}") | |
return None | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 6. OPTIMIZED AI LOOKUP & PROCESSING | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
def perform_ai_lookup(q: str, vocal_summary: bool = True, | |
extended_refs: bool = False, | |
titles_summary: bool = True, | |
full_audio: bool = False) -> Tuple[str, Dict[str, float]]: | |
"""Main AI lookup routine with performance optimization.""" | |
with PerformanceTimer("total_lookup") as total_timer: | |
timings = {} | |
# Add operation controls if not present | |
if 'operation_controls' not in st.session_state: | |
st.sidebar.markdown("### π§ Operation Controls") | |
st.session_state['enable_claude'] = st.sidebar.checkbox( | |
"Enable Claude Search", | |
value=st.session_state['enable_claude'] | |
) | |
st.session_state['enable_audio'] = st.sidebar.checkbox( | |
"Generate Audio", | |
value=st.session_state['enable_audio'] | |
) | |
st.session_state['enable_download'] = st.sidebar.checkbox( | |
"Create Download Links", | |
value=st.session_state['enable_download'] | |
) | |
st.session_state['operation_controls'] = True | |
result = "" | |
# 1. Claude API (if enabled) | |
if st.session_state['enable_claude']: | |
with PerformanceTimer("claude_api") as claude_timer: | |
try: | |
client = anthropic.Anthropic(api_key=anthropic_key) | |
response = client.messages.create( | |
model="claude-3-sonnet-20240229", | |
max_tokens=1000, | |
messages=[{"role": "user", "content": q}] | |
) | |
st.write("Claude's reply π§ :") | |
st.markdown(response.content[0].text) | |
result = response.content[0].text | |
timings['claude_api'] = time.time() - claude_timer.start_time | |
except Exception as e: | |
st.error(f"Error with Claude API: {str(e)}") | |
result = "Error occurred during Claude API call" | |
timings['claude_api'] = 0 | |
# 2. Async save and audio generation | |
async def process_results(): | |
with PerformanceTimer("results_processing") as proc_timer: | |
md_file, audio_file, md_time, audio_time = await async_save_qa_with_audio( | |
q, result | |
) | |
timings['markdown_save'] = md_time | |
timings['audio_generation'] = audio_time | |
if audio_file and st.session_state['enable_audio']: | |
st.subheader("π Main Response Audio") | |
st.audio(audio_file) | |
if st.session_state['enable_download']: | |
st.markdown( | |
create_download_link_with_cache( | |
audio_file, | |
st.session_state['audio_format'] | |
), | |
unsafe_allow_html=True | |
) | |
# Run async operations | |
asyncio.run(process_results()) | |
# 3. Arxiv RAG with performance tracking | |
if st.session_state['enable_claude']: | |
with PerformanceTimer("arxiv_rag") as rag_timer: | |
try: | |
st.write('Running Arxiv RAG with Claude inputs.') | |
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") | |
refs = client.predict( | |
q, | |
10, | |
"Semantic Search", | |
"mistralai/Mixtral-8x7B-Instruct-v0.1", | |
api_name="/update_with_rag_md" | |
)[0] | |
timings['arxiv_rag'] = time.time() - rag_timer.start_time | |
# Process papers asynchronously | |
papers = parse_arxiv_refs(refs) | |
if papers: | |
with PerformanceTimer("paper_processing") as paper_timer: | |
async def process_papers(): | |
# Create minimal links page | |
paper_links = create_paper_links_md(papers) | |
links_file = create_file(q, paper_links, "md") | |
st.markdown(paper_links) | |
# Generate audio and display papers | |
await create_paper_audio_files(papers, q) | |
display_papers(papers, get_marquee_settings()) | |
display_papers_in_sidebar(papers) | |
asyncio.run(process_papers()) | |
timings['paper_processing'] = time.time() - paper_timer.start_time | |
else: | |
st.warning("No papers found in the response.") | |
except Exception as e: | |
st.error(f"Error during Arxiv RAG: {str(e)}") | |
timings['arxiv_rag'] = 0 | |
return result, timings | |
def process_voice_input(text: str): | |
"""Process voice input with enhanced error handling and feedback.""" | |
if not text: | |
st.warning("Please provide some input text.") | |
return | |
with PerformanceTimer("voice_processing"): | |
try: | |
st.subheader("π Search Results") | |
result, timings = perform_ai_lookup( | |
text, | |
vocal_summary=True, | |
extended_refs=False, | |
titles_summary=True, | |
full_audio=True | |
) | |
# Save results | |
md_file, audio_file = save_qa_with_audio(text, result) | |
# Display results | |
st.subheader("π Generated Files") | |
col1, col2 = st.columns(2) | |
with col1: | |
st.write(f"π Markdown: {os.path.basename(md_file)}") | |
st.markdown(get_download_link(md_file, "md"), unsafe_allow_html=True) | |
with col2: | |
if audio_file: | |
st.write(f"π΅ Audio: {os.path.basename(audio_file)}") | |
play_and_download_audio( | |
audio_file, | |
st.session_state['audio_format'] | |
) | |
except Exception as e: | |
st.error(f"Error processing voice input: {str(e)}") | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 7. SIDEBAR AND FILE HISTORY | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
def display_file_history_in_sidebar(): | |
"""Display file history with enhanced organization and filtering.""" | |
with PerformanceTimer("file_history"): | |
st.sidebar.markdown("---") | |
st.sidebar.markdown("### π File History") | |
# Gather all files | |
md_files = glob.glob("*.md") | |
mp3_files = glob.glob("*.mp3") | |
wav_files = glob.glob("*.wav") | |
all_files = md_files + mp3_files + wav_files | |
if not all_files: | |
st.sidebar.write("No files found.") | |
return | |
# Add file management controls | |
col1, col2 = st.sidebar.columns(2) | |
with col1: | |
if st.button("π Delete All"): | |
try: | |
for f in all_files: | |
os.remove(f) | |
st.session_state.should_rerun = True | |
st.success("All files deleted successfully.") | |
except Exception as e: | |
st.error(f"Error deleting files: {str(e)}") | |
with col2: | |
if st.button("β¬οΈ Zip All"): | |
zip_name = create_zip_of_files( | |
md_files, | |
mp3_files, | |
wav_files, | |
st.session_state.get('last_query', '') | |
) | |
if zip_name: | |
st.sidebar.markdown( | |
get_download_link(zip_name, "zip"), | |
unsafe_allow_html=True | |
) | |
# Add file filtering options | |
st.sidebar.markdown("### π Filter Files") | |
file_search = st.sidebar.text_input("Search files:", "") | |
file_type_filter = st.sidebar.multiselect( | |
"File types:", | |
["Markdown", "Audio"], | |
default=["Markdown", "Audio"] | |
) | |
# Sort files by modification time | |
all_files.sort(key=os.path.getmtime, reverse=True) | |
# Filter files based on search and type | |
filtered_files = [] | |
for f in all_files: | |
if file_search.lower() in f.lower(): | |
ext = os.path.splitext(f)[1].lower() | |
if (("Markdown" in file_type_filter and ext == ".md") or | |
("Audio" in file_type_filter and ext in [".mp3", ".wav"])): | |
filtered_files.append(f) | |
# Display filtered files | |
for f in filtered_files: | |
fname = os.path.basename(f) | |
ext = os.path.splitext(fname)[1].lower().strip('.') | |
emoji = FILE_EMOJIS.get(ext, 'π¦') | |
# Get file metadata | |
mod_time = datetime.fromtimestamp(os.path.getmtime(f)) | |
time_str = mod_time.strftime("%Y-%m-%d %H:%M:%S") | |
file_size = os.path.getsize(f) / 1024 # Size in KB | |
with st.sidebar.expander(f"{emoji} {fname}"): | |
st.write(f"**Modified:** {time_str}") | |
st.write(f"**Size:** {file_size:.1f} KB") | |
if ext == "md": | |
try: | |
with open(f, "r", encoding="utf-8") as file_in: | |
snippet = file_in.read(200).replace("\n", " ") | |
if len(snippet) == 200: | |
snippet += "..." | |
st.write(snippet) | |
st.markdown( | |
get_download_link(f, file_type="md"), | |
unsafe_allow_html=True | |
) | |
except Exception as e: | |
st.error(f"Error reading markdown file: {str(e)}") | |
elif ext in ["mp3", "wav"]: | |
st.audio(f) | |
st.markdown( | |
get_download_link(f, file_type=ext), | |
unsafe_allow_html=True | |
) | |
else: | |
st.markdown(get_download_link(f), unsafe_allow_html=True) | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 8. MAIN APPLICATION | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
def main(): | |
"""Main application entry point with enhanced UI and error handling.""" | |
try: | |
# 1. Setup marquee UI in sidebar | |
update_marquee_settings_ui() | |
marquee_settings = get_marquee_settings() | |
# 2. Display welcome marquee | |
display_marquee( | |
st.session_state['marquee_content'], | |
{**marquee_settings, "font-size": "28px", "lineHeight": "50px"}, | |
key_suffix="welcome" | |
) | |
# 3. Main action tabs | |
tab_main = st.radio( | |
"Action:", | |
["π€ Voice", "πΈ Media", "π ArXiv", "π Editor"], | |
horizontal=True | |
) | |
# Custom component usage | |
mycomponent = components.declare_component( | |
"mycomponent", | |
path="mycomponent" | |
) | |
val = mycomponent(my_input_value="Hello") | |
if val: | |
# Process input value | |
val_stripped = val.replace('\\n', ' ') | |
edited_input = st.text_area( | |
"βοΈ Edit Input:", | |
value=val_stripped, | |
height=100 | |
) | |
# Model selection and options | |
run_option = st.selectbox("Model:", ["Arxiv"]) | |
col1, col2 = st.columns(2) | |
with col1: | |
#autorun = st.checkbox("β AutoRun", value=True) | |
autorun = st.checkbox("β AutoRun", value=False) | |
with col2: | |
full_audio = st.checkbox("π FullAudio", value=False) | |
# Check for input changes | |
input_changed = (val != st.session_state.old_val) | |
if autorun and input_changed: | |
st.session_state.old_val = val | |
st.session_state.last_query = edited_input | |
result, timings = perform_ai_lookup( | |
edited_input, | |
vocal_summary=True, | |
extended_refs=False, | |
titles_summary=True, | |
full_audio=full_audio | |
) | |
# Display performance metrics | |
display_performance_metrics(timings) | |
else: | |
if st.button("βΆ Run"): | |
st.session_state.old_val = val | |
st.session_state.last_query = edited_input | |
result, timings = perform_ai_lookup( | |
edited_input, | |
vocal_summary=True, | |
extended_refs=False, | |
titles_summary=True, | |
full_audio=full_audio | |
) | |
# Display performance metrics | |
display_performance_metrics(timings) | |
# Tab-specific content | |
if tab_main == "π ArXiv": | |
display_arxiv_tab() | |
elif tab_main == "π€ Voice": | |
display_voice_tab() | |
elif tab_main == "πΈ Media": | |
display_media_tab() | |
elif tab_main == "π Editor": | |
display_editor_tab() | |
# Display file history | |
display_file_history_in_sidebar() | |
# Apply styling | |
apply_custom_styling() | |
# Check for rerun | |
if st.session_state.should_rerun: | |
st.session_state.should_rerun = False | |
st.rerun() | |
except Exception as e: | |
st.error(f"An error occurred in the main application: {str(e)}") | |
st.info("Please try refreshing the page or contact support if the issue persists.") | |
if __name__ == "__main__": | |
main() |