Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import cv2
|
3 |
+
import glob
|
4 |
+
import json
|
5 |
+
import math
|
6 |
+
import os
|
7 |
+
import pytz
|
8 |
+
import random
|
9 |
+
import re
|
10 |
+
import requests
|
11 |
+
import streamlit as st
|
12 |
+
import streamlit.components.v1 as components
|
13 |
+
import textract
|
14 |
+
import time
|
15 |
+
import zipfile
|
16 |
+
from concurrent.futures import ThreadPoolExecutor
|
17 |
+
from tqdm import tqdm
|
18 |
+
import concurrent
|
19 |
+
|
20 |
+
from audio_recorder_streamlit import audio_recorder
|
21 |
+
from bs4 import BeautifulSoup
|
22 |
+
from collections import deque
|
23 |
+
from datetime import datetime
|
24 |
+
from dotenv import load_dotenv
|
25 |
+
from gradio_client import Client, handle_file
|
26 |
+
from huggingface_hub import InferenceClient
|
27 |
+
from io import BytesIO
|
28 |
+
from moviepy import VideoFileClip
|
29 |
+
from PIL import Image
|
30 |
+
from PyPDF2 import PdfReader
|
31 |
+
from templates import bot_template, css, user_template
|
32 |
+
from urllib.parse import quote
|
33 |
+
from xml.etree import ElementTree as ET
|
34 |
+
|
35 |
+
import openai
|
36 |
+
from openai import OpenAI
|
37 |
+
import pandas as pd
|
38 |
+
|
39 |
+
# 1. Configuration
|
40 |
+
Site_Name = 'Scholarly-Article-Document-Search-With-Memory'
|
41 |
+
title = "🔬🧠ScienceBrain.AI"
|
42 |
+
helpURL = 'https://huggingface.co/awacke1'
|
43 |
+
bugURL = 'https://huggingface.co/spaces/awacke1'
|
44 |
+
icons = Image.open("icons.ico")
|
45 |
+
st.set_page_config(
|
46 |
+
page_title=title,
|
47 |
+
page_icon=icons,
|
48 |
+
layout="wide",
|
49 |
+
initial_sidebar_state="auto",
|
50 |
+
menu_items={'Get Help': helpURL, 'Report a bug': bugURL, 'About': title}
|
51 |
+
)
|
52 |
+
|
53 |
+
# API Configuration
|
54 |
+
API_KEY = os.getenv('API_KEY')
|
55 |
+
HF_KEY = os.getenv('HF_KEY')
|
56 |
+
headers = {"Authorization": f"Bearer {HF_KEY}", "Content-Type": "application/json"}
|
57 |
+
key = os.getenv('OPENAI_API_KEY')
|
58 |
+
client = OpenAI(api_key=key, organization=os.getenv('OPENAI_ORG_ID'))
|
59 |
+
MODEL = "gpt-4o-2024-05-13"
|
60 |
+
if "openai_model" not in st.session_state:
|
61 |
+
st.session_state["openai_model"] = MODEL
|
62 |
+
if "messages" not in st.session_state:
|
63 |
+
st.session_state.messages = []
|
64 |
+
if st.button("Clear Session"):
|
65 |
+
st.session_state.messages = []
|
66 |
+
|
67 |
+
# Sidebar Options
|
68 |
+
should_save = st.sidebar.checkbox("💾 Save", value=True, help="Save your session data.")
|
69 |
+
|
70 |
+
# HTML5 Speech Synthesis
|
71 |
+
@st.cache_resource
|
72 |
+
def SpeechSynthesis(result):
|
73 |
+
documentHTML5 = '''
|
74 |
+
<!DOCTYPE html>
|
75 |
+
<html>
|
76 |
+
<head>
|
77 |
+
<title>Read It Aloud</title>
|
78 |
+
<script type="text/javascript">
|
79 |
+
function readAloud() {
|
80 |
+
const text = document.getElementById("textArea").value;
|
81 |
+
const speech = new SpeechSynthesisUtterance(text);
|
82 |
+
window.speechSynthesis.speak(speech);
|
83 |
+
}
|
84 |
+
</script>
|
85 |
+
</head>
|
86 |
+
<body>
|
87 |
+
<h1>🔊 Read It Aloud</h1>
|
88 |
+
<textarea id="textArea" rows="10" cols="80">
|
89 |
+
'''
|
90 |
+
documentHTML5 += result + '''
|
91 |
+
</textarea>
|
92 |
+
<br>
|
93 |
+
<button onclick="readAloud()">🔊 Read Aloud</button>
|
94 |
+
</body>
|
95 |
+
</html>
|
96 |
+
'''
|
97 |
+
components.html(documentHTML5, width=1280, height=300)
|
98 |
+
|
99 |
+
# File Naming and Saving
|
100 |
+
def generate_filename(prompt, file_type):
|
101 |
+
central = pytz.timezone('US/Central')
|
102 |
+
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
|
103 |
+
replaced_prompt = re.sub(r'[<>:"/\\|?*\n]', ' ', prompt)
|
104 |
+
safe_prompt = re.sub(r'\s+', ' ', replaced_prompt).strip()[:240]
|
105 |
+
return f"{safe_date_time}_{safe_prompt}.{file_type}"
|
106 |
+
|
107 |
+
def create_and_save_file(content, file_type="md", prompt=None, is_image=False, should_save=True):
|
108 |
+
if not should_save:
|
109 |
+
return None
|
110 |
+
filename = generate_filename(prompt if prompt else content, file_type)
|
111 |
+
with open(filename, "w", encoding="utf-8") as f:
|
112 |
+
if is_image:
|
113 |
+
f.write(content)
|
114 |
+
else:
|
115 |
+
f.write(prompt + "\n\n" + content if prompt else content)
|
116 |
+
return filename
|
117 |
+
|
118 |
+
# Text Processing
|
119 |
+
def process_text(text_input):
|
120 |
+
if text_input:
|
121 |
+
st.session_state.messages.append({"role": "user", "content": text_input})
|
122 |
+
with st.chat_message("user"):
|
123 |
+
st.markdown(text_input)
|
124 |
+
with st.chat_message("assistant"):
|
125 |
+
completion = client.chat.completions.create(
|
126 |
+
model=st.session_state["openai_model"],
|
127 |
+
messages=[{"role": m["role"], "content": m["content"]} for m in st.session_state.messages],
|
128 |
+
stream=False
|
129 |
+
)
|
130 |
+
response = completion.choices[0].message.content
|
131 |
+
st.markdown(response)
|
132 |
+
filename = generate_filename(text_input, "md")
|
133 |
+
create_and_save_file(response, "md", text_input, should_save=should_save)
|
134 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
135 |
+
|
136 |
+
# Audio Processing
|
137 |
+
def process_audio(audio_input, text_input=''):
|
138 |
+
if audio_input:
|
139 |
+
audio_bytes = audio_input.read() if not isinstance(audio_input, str) else open(audio_input, "rb").read()
|
140 |
+
with st.spinner("Transcribing audio..."):
|
141 |
+
transcription = client.audio.transcriptions.create(model="whisper-1", file=BytesIO(audio_bytes))
|
142 |
+
st.session_state.messages.append({"role": "user", "content": transcription.text})
|
143 |
+
with st.chat_message("user"):
|
144 |
+
st.markdown(transcription.text)
|
145 |
+
with st.chat_message("assistant"):
|
146 |
+
completion = client.chat.completions.create(
|
147 |
+
model=st.session_state["openai_model"],
|
148 |
+
messages=[{"role": "user", "content": text_input + "\n\nTranscription: " + transcription.text}]
|
149 |
+
)
|
150 |
+
response = completion.choices[0].message.content
|
151 |
+
st.markdown(response)
|
152 |
+
filename = generate_filename(transcription.text, "md")
|
153 |
+
create_and_save_file(response, "md", text_input, should_save=should_save)
|
154 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
155 |
+
|
156 |
+
# Image Processing
|
157 |
+
def process_image(image_input, user_prompt):
|
158 |
+
if isinstance(image_input, str):
|
159 |
+
with open(image_input, "rb") as image_file:
|
160 |
+
image_bytes = image_file.read()
|
161 |
+
else:
|
162 |
+
image_bytes = image_input.read()
|
163 |
+
base64_image = base64.b64encode(image_bytes).decode("utf-8")
|
164 |
+
response = client.chat.completions.create(
|
165 |
+
model=st.session_state["openai_model"],
|
166 |
+
messages=[
|
167 |
+
{"role": "system", "content": "You are a helpful assistant that responds in Markdown."},
|
168 |
+
{"role": "user", "content": [
|
169 |
+
{"type": "text", "text": user_prompt},
|
170 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}
|
171 |
+
]}
|
172 |
+
],
|
173 |
+
temperature=0.0
|
174 |
+
)
|
175 |
+
image_response = response.choices[0].message.content
|
176 |
+
filename = generate_filename(user_prompt, "md")
|
177 |
+
create_and_save_file(image_response, "md", user_prompt, should_save=should_save)
|
178 |
+
return image_response
|
179 |
+
|
180 |
+
# Video Processing
|
181 |
+
def save_video(video_file):
|
182 |
+
with open(video_file.name, "wb") as f:
|
183 |
+
f.write(video_file.getbuffer())
|
184 |
+
return video_file.name
|
185 |
+
|
186 |
+
def process_video(video_path, seconds_per_frame=2):
|
187 |
+
base64Frames = []
|
188 |
+
base_video_path, _ = os.path.splitext(video_path)
|
189 |
+
video = cv2.VideoCapture(video_path)
|
190 |
+
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
191 |
+
fps = video.get(cv2.CAP_PROP_FPS)
|
192 |
+
frames_to_skip = int(fps * seconds_per_frame)
|
193 |
+
curr_frame = 0
|
194 |
+
while curr_frame < total_frames - 1:
|
195 |
+
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
|
196 |
+
success, frame = video.read()
|
197 |
+
if not success:
|
198 |
+
break
|
199 |
+
_, buffer = cv2.imencode(".jpg", frame)
|
200 |
+
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
|
201 |
+
curr_frame += frames_to_skip
|
202 |
+
video.release()
|
203 |
+
audio_path = f"{base_video_path}.mp3"
|
204 |
+
try:
|
205 |
+
clip = VideoFileClip(video_path)
|
206 |
+
clip.audio.write_audiofile(audio_path, bitrate="32k")
|
207 |
+
clip.audio.close()
|
208 |
+
clip.close()
|
209 |
+
except:
|
210 |
+
st.write('No audio track found.')
|
211 |
+
return base64Frames, audio_path
|
212 |
+
|
213 |
+
def process_audio_and_video(video_input):
|
214 |
+
if video_input:
|
215 |
+
video_path = save_video(video_input)
|
216 |
+
with st.spinner("Extracting frames and audio..."):
|
217 |
+
base64Frames, audio_path = process_video(video_path)
|
218 |
+
with st.spinner("Transcribing video audio..."):
|
219 |
+
with open(video_path, "rb") as video_file:
|
220 |
+
transcript = client.audio.transcriptions.create(model="whisper-1", file=video_file).text
|
221 |
+
with st.chat_message("user"):
|
222 |
+
st.markdown(f"Video Transcription: {transcript}")
|
223 |
+
with st.chat_message("assistant"):
|
224 |
+
response = client.chat.completions.create(
|
225 |
+
model=st.session_state["openai_model"],
|
226 |
+
messages=[
|
227 |
+
{"role": "system", "content": "Summarize the video and its transcript in Markdown."},
|
228 |
+
{"role": "user", "content": [
|
229 |
+
"Video frames:", *map(lambda x: {"type": "image_url", "image_url": {"url": f"data:image/jpg;base64,{x}"}}, base64Frames),
|
230 |
+
{"type": "text", "text": f"Transcription: {transcript}"}
|
231 |
+
]}
|
232 |
+
]
|
233 |
+
)
|
234 |
+
result = response.choices[0].message.content
|
235 |
+
st.markdown(result)
|
236 |
+
filename = generate_filename(transcript or "video_summary", "md")
|
237 |
+
create_and_save_file(result, "md", "Video summary", should_save=should_save)
|
238 |
+
|
239 |
+
# RAG PDF Gallery
|
240 |
+
def extract_text_from_pdf(pdf_path):
|
241 |
+
text = ""
|
242 |
+
try:
|
243 |
+
with open(pdf_path, "rb") as f:
|
244 |
+
reader = PdfReader(f)
|
245 |
+
for page in reader.pages:
|
246 |
+
page_text = page.extract_text()
|
247 |
+
if page_text:
|
248 |
+
text += page_text
|
249 |
+
except Exception as e:
|
250 |
+
st.error(f"Error reading {pdf_path}: {e}")
|
251 |
+
return text
|
252 |
+
|
253 |
+
def generate_questions(pdf_path):
|
254 |
+
text = extract_text_from_pdf(pdf_path)
|
255 |
+
response = client.chat.completions.create(
|
256 |
+
model="gpt-4o-2024-05-13",
|
257 |
+
messages=[{"role": "user", "content": f"Generate a question that can only be answered from this document:\n{text[:2000]}"}]
|
258 |
+
)
|
259 |
+
return response.choices[0].message.content
|
260 |
+
|
261 |
+
def upload_single_pdf(file_path, vector_store_id):
|
262 |
+
file_name = os.path.basename(file_path)
|
263 |
+
try:
|
264 |
+
file_response = client.files.create(file=open(file_path, 'rb'), purpose="assistants")
|
265 |
+
attach_response = client.vector_stores.files.create(
|
266 |
+
vector_store_id=vector_store_id,
|
267 |
+
file_id=file_response.id
|
268 |
+
)
|
269 |
+
return {"file": file_name, "status": "success"}
|
270 |
+
except Exception as e:
|
271 |
+
st.error(f"Error with {file_name}: {str(e)}")
|
272 |
+
return {"file": file_name, "status": "failed", "error": str(e)}
|
273 |
+
|
274 |
+
def upload_pdf_files_to_vector_store(vector_store_id, pdf_files):
|
275 |
+
stats = {"total_files": len(pdf_files), "successful_uploads": 0, "failed_uploads": 0, "errors": []}
|
276 |
+
with ThreadPoolExecutor(max_workers=10) as executor:
|
277 |
+
futures = {executor.submit(upload_single_pdf, file_path, vector_store_id): file_path for file_path in pdf_files}
|
278 |
+
for future in tqdm(concurrent.futures.as_completed(futures), total=len(pdf_files)):
|
279 |
+
result = future.result()
|
280 |
+
if result["status"] == "success":
|
281 |
+
stats["successful_uploads"] += 1
|
282 |
+
else:
|
283 |
+
stats["failed_uploads"] += 1
|
284 |
+
stats["errors"].append(result)
|
285 |
+
return stats
|
286 |
+
|
287 |
+
def create_vector_store(store_name):
|
288 |
+
try:
|
289 |
+
vector_store = client.vector_stores.create(name=store_name)
|
290 |
+
return {"id": vector_store.id, "name": vector_store.name, "created_at": vector_store.created_at, "file_count": vector_store.file_counts.completed}
|
291 |
+
except Exception as e:
|
292 |
+
st.error(f"Error creating vector store: {e}")
|
293 |
+
return {}
|
294 |
+
|
295 |
+
def process_rag_query(query, vector_store_id):
|
296 |
+
response = client.chat.completions.create(
|
297 |
+
model="gpt-4o-mini",
|
298 |
+
messages=[{"role": "user", "content": query}],
|
299 |
+
tools=[{"type": "file_search", "file_search": {"vector_store_ids": [vector_store_id]}}],
|
300 |
+
tool_choice="auto"
|
301 |
+
)
|
302 |
+
return response.choices[0].message.content, response.choices[0].tool_calls if response.choices[0].tool_calls else []
|
303 |
+
|
304 |
+
def evaluate_rag_performance(questions_dict, vector_store_id, k=5):
|
305 |
+
total_queries = len(questions_dict)
|
306 |
+
correct_retrievals_at_k = 0
|
307 |
+
reciprocal_ranks = []
|
308 |
+
average_precisions = []
|
309 |
+
|
310 |
+
for filename, query in questions_dict.items():
|
311 |
+
expected_filename = filename
|
312 |
+
response, tool_calls = process_rag_query(query, vector_store_id)
|
313 |
+
if tool_calls and tool_calls[0].function.name == "file_search":
|
314 |
+
search_results = json.loads(tool_calls[0].function.arguments).get("search_results", [])
|
315 |
+
retrieved_files = [result["file"]["filename"] for result in search_results[:k]]
|
316 |
+
if expected_filename in retrieved_files:
|
317 |
+
rank = retrieved_files.index(expected_filename) + 1
|
318 |
+
correct_retrievals_at_k += 1
|
319 |
+
reciprocal_ranks.append(1 / rank)
|
320 |
+
precisions = [1 if f == expected_filename else 0 for f in retrieved_files[:rank]]
|
321 |
+
average_precisions.append(sum(precisions) / len(precisions))
|
322 |
+
else:
|
323 |
+
reciprocal_ranks.append(0)
|
324 |
+
average_precisions.append(0)
|
325 |
+
else:
|
326 |
+
reciprocal_ranks.append(0)
|
327 |
+
average_precisions.append(0)
|
328 |
+
|
329 |
+
recall_at_k = correct_retrievals_at_k / total_queries
|
330 |
+
precision_at_k = recall_at_k
|
331 |
+
mrr = sum(reciprocal_ranks) / total_queries
|
332 |
+
map_score = sum(average_precisions) / total_queries
|
333 |
+
return {"recall@k": recall_at_k, "precision@k": precision_at_k, "mrr": mrr, "map": map_score}
|
334 |
+
|
335 |
+
def rag_pdf_gallery():
|
336 |
+
st.subheader("📚 RAG PDF Gallery")
|
337 |
+
pdf_files = st.file_uploader("Upload PDFs", type=["pdf"], accept_multiple_files=True)
|
338 |
+
if pdf_files:
|
339 |
+
# Save uploaded PDFs locally
|
340 |
+
local_pdf_paths = []
|
341 |
+
for pdf in pdf_files:
|
342 |
+
pdf_path = f"temp_{pdf.name}"
|
343 |
+
with open(pdf_path, "wb") as f:
|
344 |
+
f.write(pdf.read())
|
345 |
+
local_pdf_paths.append(pdf_path)
|
346 |
+
|
347 |
+
# Generate evaluation questions
|
348 |
+
with st.spinner("Generating evaluation questions..."):
|
349 |
+
questions_dict = {os.path.basename(pdf_path): generate_questions(pdf_path) for pdf_path in local_pdf_paths}
|
350 |
+
st.write("Generated Questions:", questions_dict)
|
351 |
+
|
352 |
+
# Create and populate vector store
|
353 |
+
store_name = "rag_pdf_gallery_store"
|
354 |
+
with st.spinner("Creating vector store..."):
|
355 |
+
vector_store_details = create_vector_store(store_name)
|
356 |
+
upload_stats = upload_pdf_files_to_vector_store(vector_store_details["id"], local_pdf_paths)
|
357 |
+
st.write("Upload Stats:", upload_stats)
|
358 |
+
|
359 |
+
# Query interface
|
360 |
+
query = st.text_input("Ask a question about the PDFs:")
|
361 |
+
if query:
|
362 |
+
with st.spinner("Processing RAG query..."):
|
363 |
+
response, tool_calls = process_rag_query(query, vector_store_details["id"])
|
364 |
+
st.markdown("**Response:**")
|
365 |
+
st.markdown(response)
|
366 |
+
if tool_calls:
|
367 |
+
st.markdown("**Retrieved Chunks:**")
|
368 |
+
search_results = json.loads(tool_calls[0].function.arguments).get("search_results", [])
|
369 |
+
for result in search_results:
|
370 |
+
st.write(f"- File: {result['file']['filename']}, Score: {result['score']}")
|
371 |
+
|
372 |
+
# Evaluate performance
|
373 |
+
if st.button("Evaluate RAG Performance"):
|
374 |
+
with st.spinner("Evaluating performance..."):
|
375 |
+
metrics = evaluate_rag_performance(questions_dict, vector_store_details["id"])
|
376 |
+
st.write("Evaluation Metrics:", metrics)
|
377 |
+
|
378 |
+
# Cleanup
|
379 |
+
for pdf_path in local_pdf_paths:
|
380 |
+
os.remove(pdf_path)
|
381 |
+
|
382 |
+
# File Sidebar
|
383 |
+
def FileSidebar():
|
384 |
+
st.sidebar.title("File Operations")
|
385 |
+
file_types = st.sidebar.multiselect("Filter by type", [".md", ".wav", ".png", ".mp4", ".mp3"], default=[".md"])
|
386 |
+
all_files = [f for f in glob.glob("*.*") if os.path.splitext(f)[1] in file_types and len(os.path.splitext(f)[0]) >= 10]
|
387 |
+
all_files.sort(key=lambda x: os.path.getmtime(x), reverse=True)
|
388 |
+
|
389 |
+
if st.sidebar.button("🗑 Delete All Filtered"):
|
390 |
+
for file in all_files:
|
391 |
+
os.remove(file)
|
392 |
+
st.rerun()
|
393 |
+
|
394 |
+
@st.cache_resource
|
395 |
+
def create_zip_of_files(files):
|
396 |
+
zip_name = "files.zip"
|
397 |
+
with zipfile.ZipFile(zip_name, 'w') as zipf:
|
398 |
+
for file in files:
|
399 |
+
zipf.write(file)
|
400 |
+
return zip_name
|
401 |
+
|
402 |
+
@st.cache_resource
|
403 |
+
def get_zip_download_link(zip_file):
|
404 |
+
with open(zip_file, 'rb') as f:
|
405 |
+
data = f.read()
|
406 |
+
b64 = base64.b64encode(data).decode()
|
407 |
+
return f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
|
408 |
+
|
409 |
+
if st.sidebar.button("⬇️ Download All Filtered"):
|
410 |
+
zip_file = create_zip_of_files(all_files)
|
411 |
+
st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
|
412 |
+
|
413 |
+
for file in all_files:
|
414 |
+
col1, col2, col3 = st.sidebar.columns([1, 6, 1])
|
415 |
+
with col1:
|
416 |
+
if st.button("🌐", key=f"view_{file}"):
|
417 |
+
with open(file, "r", encoding="utf-8") as f:
|
418 |
+
content = f.read()
|
419 |
+
st.markdown(content)
|
420 |
+
SpeechSynthesis(content)
|
421 |
+
with col2:
|
422 |
+
st.write(file)
|
423 |
+
with col3:
|
424 |
+
if st.button("🗑", key=f"delete_{file}"):
|
425 |
+
os.remove(file)
|
426 |
+
st.rerun()
|
427 |
+
|
428 |
+
# Main Function
|
429 |
+
def main():
|
430 |
+
st.markdown("##### GPT-4o Omni Model: Text, Audio, Image, Video & RAG")
|
431 |
+
model_options = ["gpt-4o-2024-05-13", "gpt-3.5-turbo", "gpt-4o-mini"]
|
432 |
+
selected_model = st.selectbox("Select GPT Model", model_options, index=0)
|
433 |
+
st.session_state["openai_model"] = selected_model
|
434 |
+
|
435 |
+
option = st.selectbox("Select Input Type", ("Text", "Image", "Audio", "Video", "RAG PDF Gallery"))
|
436 |
+
|
437 |
+
if option == "Text":
|
438 |
+
text_input = st.text_input("Enter your text:")
|
439 |
+
if text_input:
|
440 |
+
with st.spinner("Processing..."):
|
441 |
+
process_text(text_input)
|
442 |
+
|
443 |
+
elif option == "Image":
|
444 |
+
default_prompt = "Describe this image and list ten facts in a markdown outline with emojis."
|
445 |
+
text_input = st.text_input("Image Prompt:", value=default_prompt)
|
446 |
+
image_input = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
|
447 |
+
if image_input and text_input:
|
448 |
+
with st.spinner("Processing..."):
|
449 |
+
image_response = process_image(image_input, text_input)
|
450 |
+
with st.chat_message("ai", avatar="🦖"):
|
451 |
+
st.markdown(image_response)
|
452 |
+
|
453 |
+
elif option == "Audio":
|
454 |
+
default_prompt = "Summarize this audio transcription in Markdown."
|
455 |
+
text_input = st.text_input("Audio Prompt:", value=default_prompt)
|
456 |
+
audio_input = st.file_uploader("Upload an audio file", type=["mp3", "wav"])
|
457 |
+
if audio_input and text_input:
|
458 |
+
with st.spinner("Processing..."):
|
459 |
+
process_audio(audio_input, text_input)
|
460 |
+
|
461 |
+
elif option == "Video":
|
462 |
+
default_prompt = "Summarize this video and its transcription in Markdown."
|
463 |
+
text_input = st.text_input("Video Prompt:", value=default_prompt)
|
464 |
+
video_input = st.file_uploader("Upload a video file", type=["mp4"])
|
465 |
+
if video_input and text_input:
|
466 |
+
with st.spinner("Processing..."):
|
467 |
+
process_audio_and_video(video_input)
|
468 |
+
|
469 |
+
elif option == "RAG PDF Gallery":
|
470 |
+
rag_pdf_gallery()
|
471 |
+
|
472 |
+
# Chat History and Display
|
473 |
+
for message in st.session_state.messages:
|
474 |
+
with st.chat_message(message["role"]):
|
475 |
+
st.markdown(message["content"])
|
476 |
+
|
477 |
+
if prompt := st.chat_input("GPT-4o Multimodal ChatBot - What can I help you with?"):
|
478 |
+
process_text(prompt)
|
479 |
+
|
480 |
+
FileSidebar()
|
481 |
+
main()
|