Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,13 +3,33 @@ import pandas as pd
|
|
3 |
import plotly.graph_objects as go
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
-
dataset = load_dataset(
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def filter_map(min_price, max_price, boroughs):
|
10 |
|
11 |
-
filtered_df = df[(df['neighbourhood_group'].isin(boroughs)) &
|
12 |
-
(df['price'] > min_price) & (df['price'] < max_price)]
|
13 |
names = filtered_df["name"].tolist()
|
14 |
prices = filtered_df["price"].tolist()
|
15 |
text_list = [(names[i], prices[i]) for i in range(0, len(names))]
|
@@ -49,7 +69,17 @@ with gr.Blocks() as demo:
|
|
49 |
boroughs = gr.CheckboxGroup(choices=["Queens", "Brooklyn", "Manhattan", "Bronx", "Staten Island"], value=["Queens", "Brooklyn"], label="Select Boroughs:")
|
50 |
btn = gr.Button(value="Update Filter")
|
51 |
map = gr.Plot().style()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
demo.load(filter_map, [min_price, max_price, boroughs], map)
|
53 |
btn.click(filter_map, [min_price, max_price, boroughs], map)
|
|
|
|
|
54 |
|
55 |
demo.launch()
|
|
|
3 |
import plotly.graph_objects as go
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
+
dataset = load_dataset('text', data_files={'train': ['NPI_2023_01_17-05.10.57.PM.csv'], 'test': 'NPI_2023_01_17-05.10.57.PM.csv'})
|
7 |
+
|
8 |
+
#1.6GB NPI file with MH therapy taxonomy provider codes (NUCC based) with human friendly replacement labels (e.g. Counselor rather than code)
|
9 |
+
#datasetNPIMH = load_dataset("awacke1/NPI-Providers-And-Facilities-By-Taxonomy", split="train")
|
10 |
+
#datasetNPIMH = load_dataset("awacke1/NPI-Providers-And-Facilities-By-Taxonomy", split='train[:1%]')
|
11 |
+
#print(datasetNPIMH.shape)
|
12 |
+
|
13 |
+
datasetNYC = load_dataset("gradio/NYC-Airbnb-Open-Data", split="train")
|
14 |
+
df = datasetNYC.to_pandas()
|
15 |
+
|
16 |
+
def MatchText(pddf, name):
|
17 |
+
pd.set_option("display.max_rows", None)
|
18 |
+
data = pddf
|
19 |
+
swith=data.loc[data['text'].str.contains(name, case=False, na=False)]
|
20 |
+
return swith
|
21 |
+
|
22 |
+
def getDatasetFind(findString):
|
23 |
+
#finder = dataset.filter(lambda example: example['text'].find(findString))
|
24 |
+
finder = dataset['train'].filter(lambda example: example['text'].find(findString))
|
25 |
+
finder = finder = finder.to_pandas()
|
26 |
+
g1=MatchText(finder, findString)
|
27 |
+
|
28 |
+
return g1
|
29 |
|
30 |
def filter_map(min_price, max_price, boroughs):
|
31 |
|
32 |
+
filtered_df = df[(df['neighbourhood_group'].isin(boroughs)) & (df['price'] > min_price) & (df['price'] < max_price)]
|
|
|
33 |
names = filtered_df["name"].tolist()
|
34 |
prices = filtered_df["price"].tolist()
|
35 |
text_list = [(names[i], prices[i]) for i in range(0, len(names))]
|
|
|
69 |
boroughs = gr.CheckboxGroup(choices=["Queens", "Brooklyn", "Manhattan", "Bronx", "Staten Island"], value=["Queens", "Brooklyn"], label="Select Boroughs:")
|
70 |
btn = gr.Button(value="Update Filter")
|
71 |
map = gr.Plot().style()
|
72 |
+
|
73 |
+
with gr.Row():
|
74 |
+
df20 = gr.Textbox(lines=4, default="", label="Find Text:")
|
75 |
+
btn2 = gr.Button(value="Find")
|
76 |
+
#df21 = gr.Textbox(lines=4, default="", label="Found:")
|
77 |
+
with gr.Row():
|
78 |
+
df4 = gr.Dataframe(wrap=True, max_rows=10000, overflow_row_behaviour= "paginate")
|
79 |
+
|
80 |
demo.load(filter_map, [min_price, max_price, boroughs], map)
|
81 |
btn.click(filter_map, [min_price, max_price, boroughs], map)
|
82 |
+
|
83 |
+
btn2.click(getDatasetFind,df20,df4 )
|
84 |
|
85 |
demo.launch()
|