Spaces:
Running
Running
from html import escape | |
import re | |
import streamlit as st | |
import pandas as pd, numpy as np | |
from transformers import CLIPProcessor, CLIPModel | |
from st_clickable_images import clickable_images | |
def load(): | |
model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14") | |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14") | |
df = {0: pd.read_csv("data.csv"), 1: pd.read_csv("data2.csv")} | |
embeddings = {0: np.load("embeddings.npy"), 1: np.load("embeddings2.npy")} | |
for k in [0, 1]: | |
embeddings[k] = embeddings[k] / np.linalg.norm( | |
embeddings[k], axis=1, keepdims=True | |
) | |
return model, processor, df, embeddings | |
model, processor, df, embeddings = load() | |
source = {0: "\nSource: Unsplash", 1: "\nSource: The Movie Database (TMDB)"} | |
def compute_text_embeddings(list_of_strings): | |
inputs = processor(text=list_of_strings, return_tensors="pt", padding=True) | |
result = model.get_text_features(**inputs).detach().numpy() | |
return result / np.linalg.norm(result, axis=1, keepdims=True) | |
def image_search(query, corpus, n_results=24): | |
positive_embeddings = None | |
def concatenate_embeddings(e1, e2): | |
if e1 is None: | |
return e2 | |
else: | |
return np.concatenate((e1, e2), axis=0) | |
splitted_query = query.split("EXCLUDING ") | |
dot_product = 0 | |
k = 0 if corpus == "Unsplash" else 1 | |
if len(splitted_query[0]) > 0: | |
positive_queries = splitted_query[0].split(";") | |
for positive_query in positive_queries: | |
match = re.match(r"\[(Movies|Unsplash):(\d{1,5})\](.*)", positive_query) | |
if match: | |
corpus2, idx, remainder = match.groups() | |
idx, remainder = int(idx), remainder.strip() | |
k2 = 0 if corpus2 == "Unsplash" else 1 | |
positive_embeddings = concatenate_embeddings( | |
positive_embeddings, embeddings[k2][idx : idx + 1, :] | |
) | |
if len(remainder) > 0: | |
positive_embeddings = concatenate_embeddings( | |
positive_embeddings, compute_text_embeddings([remainder]) | |
) | |
else: | |
positive_embeddings = concatenate_embeddings( | |
positive_embeddings, compute_text_embeddings([positive_query]) | |
) | |
dot_product = embeddings[k] @ positive_embeddings.T | |
dot_product = dot_product - np.median(dot_product, axis=0) | |
dot_product = dot_product / np.max(dot_product, axis=0, keepdims=True) | |
dot_product = np.min(dot_product, axis=1) | |
if len(splitted_query) > 1: | |
negative_queries = (" ".join(splitted_query[1:])).split(";") | |
negative_embeddings = compute_text_embeddings(negative_queries) | |
dot_product2 = embeddings[k] @ negative_embeddings.T | |
dot_product2 = dot_product2 - np.median(dot_product2, axis=0) | |
dot_product2 = dot_product2 / np.max(dot_product2, axis=0, keepdims=True) | |
dot_product -= np.max(np.maximum(dot_product2, 0), axis=1) | |
results = np.argsort(dot_product)[-1 : -n_results - 1 : -1] | |
return [ | |
( | |
df[k].iloc[i]["path"], | |
df[k].iloc[i]["tooltip"] + source[k], | |
i, | |
) | |
for i in results | |
] | |
description = """ | |
# Semantic image search | |
**Enter your query and hit enter** | |
""" | |
howto = """ | |
- Click image to find similar images | |
- Use "**;**" to combine multiple queries) | |
- Use "**EXCLUDING**", to exclude a query | |
""" | |
def main(): | |
st.markdown( | |
""" | |
<style> | |
.block-container{ | |
max-width: 1200px; | |
} | |
div.row-widget.stRadio > div{ | |
flex-direction:row; | |
display: flex; | |
justify-content: center; | |
} | |
div.row-widget.stRadio > div > label{ | |
margin-left: 5px; | |
margin-right: 5px; | |
} | |
section.main>div:first-child { | |
padding-top: 0px; | |
} | |
section:not(.main)>div:first-child { | |
padding-top: 30px; | |
} | |
div.reportview-container > section:first-child{ | |
max-width: 320px; | |
} | |
#MainMenu { | |
visibility: hidden; | |
} | |
footer { | |
visibility: hidden; | |
} | |
</style>""", | |
unsafe_allow_html=True, | |
) | |
st.sidebar.markdown(description) | |
with st.sidebar.expander("Advanced use"): | |
st.markdown(howto) | |
st.sidebar.markdown(f"Unsplash has categories that match: backgrounds, photos, nature, iphone, etc") | |
st.sidebar.markdown(f"Unsplash images contain animals, apps, events, feelings, food, travel, nature, people, religion, sports, things, stock") | |
st.sidebar.markdown(f"Unsplash things include flag, tree, clock, money, tattoo, arrow, book, car, fireworks, ghost, health, kiss, dance, balloon, crown, eye, house, music, airplane, lighthouse, typewriter, toys") | |
st.sidebar.markdown(f"unsplash feelings include funny, heart, love, cool, congratulations, love, scary, cute, friendship, inspirational, hug, sad, cursed, beautiful, crazy, respect, transformation, peaceful, happy") | |
st.sidebar.markdown(f"unsplash people contain baby, life, women, family, girls, pregnancy, society, old people, musician, attractive, bohemian") | |
st.sidebar.markdown(f"imagenet queries include: photo of, photo of many, sculpture of, rendering of, graffiti of, tattoo of, embroidered, drawing of, plastic, black and white, painting, video game, doodle, origami, sketch, etc") | |
_, c, _ = st.columns((1, 3, 1)) | |
if "query" in st.session_state: | |
query = c.text_input("", value=st.session_state["query"]) | |
else: | |
query = c.text_input("", value="lighthouse") | |
corpus = st.radio("", ["Unsplash"]) | |
#corpus = st.radio("", ["Unsplash", "Movies"]) | |
if len(query) > 0: | |
results = image_search(query, corpus) | |
clicked = clickable_images( | |
[result[0] for result in results], | |
titles=[result[1] for result in results], | |
div_style={ | |
"display": "flex", | |
"justify-content": "center", | |
"flex-wrap": "wrap", | |
}, | |
img_style={"margin": "2px", "height": "200px"}, | |
) | |
if clicked >= 0: | |
change_query = False | |
if "last_clicked" not in st.session_state: | |
change_query = True | |
else: | |
if clicked != st.session_state["last_clicked"]: | |
change_query = True | |
if change_query: | |
st.session_state["query"] = f"[{corpus}:{results[clicked][2]}]" | |
st.experimental_rerun() | |
if __name__ == "__main__": | |
main() | |