Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import gradio as gr
|
5 |
+
from PIL import Image
|
6 |
+
import torchvision.transforms as transforms
|
7 |
+
import os # 📁 For file operations
|
8 |
+
|
9 |
+
# 🧠 Neural network layers
|
10 |
+
norm_layer = nn.InstanceNorm2d
|
11 |
+
|
12 |
+
# 🧱 Building block for the generator
|
13 |
+
class ResidualBlock(nn.Module):
|
14 |
+
def __init__(self, in_features):
|
15 |
+
super(ResidualBlock, self).__init__()
|
16 |
+
|
17 |
+
conv_block = [ nn.ReflectionPad2d(1),
|
18 |
+
nn.Conv2d(in_features, in_features, 3),
|
19 |
+
norm_layer(in_features),
|
20 |
+
nn.ReLU(inplace=True),
|
21 |
+
nn.ReflectionPad2d(1),
|
22 |
+
nn.Conv2d(in_features, in_features, 3),
|
23 |
+
norm_layer(in_features)
|
24 |
+
]
|
25 |
+
|
26 |
+
self.conv_block = nn.Sequential(*conv_block)
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
return x + self.conv_block(x)
|
30 |
+
|
31 |
+
# 🎨 Generator model for creating line drawings
|
32 |
+
class Generator(nn.Module):
|
33 |
+
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
|
34 |
+
super(Generator, self).__init__()
|
35 |
+
|
36 |
+
# 🏁 Initial convolution block
|
37 |
+
model0 = [ nn.ReflectionPad2d(3),
|
38 |
+
nn.Conv2d(input_nc, 64, 7),
|
39 |
+
norm_layer(64),
|
40 |
+
nn.ReLU(inplace=True) ]
|
41 |
+
self.model0 = nn.Sequential(*model0)
|
42 |
+
|
43 |
+
# 🔽 Downsampling
|
44 |
+
model1 = []
|
45 |
+
in_features = 64
|
46 |
+
out_features = in_features*2
|
47 |
+
for _ in range(2):
|
48 |
+
model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
|
49 |
+
norm_layer(out_features),
|
50 |
+
nn.ReLU(inplace=True) ]
|
51 |
+
in_features = out_features
|
52 |
+
out_features = in_features*2
|
53 |
+
self.model1 = nn.Sequential(*model1)
|
54 |
+
|
55 |
+
# 🔁 Residual blocks
|
56 |
+
model2 = []
|
57 |
+
for _ in range(n_residual_blocks):
|
58 |
+
model2 += [ResidualBlock(in_features)]
|
59 |
+
self.model2 = nn.Sequential(*model2)
|
60 |
+
|
61 |
+
# 🔼 Upsampling
|
62 |
+
model3 = []
|
63 |
+
out_features = in_features//2
|
64 |
+
for _ in range(2):
|
65 |
+
model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
|
66 |
+
norm_layer(out_features),
|
67 |
+
nn.ReLU(inplace=True) ]
|
68 |
+
in_features = out_features
|
69 |
+
out_features = in_features//2
|
70 |
+
self.model3 = nn.Sequential(*model3)
|
71 |
+
|
72 |
+
# 🎭 Output layer
|
73 |
+
model4 = [ nn.ReflectionPad2d(3),
|
74 |
+
nn.Conv2d(64, output_nc, 7)]
|
75 |
+
if sigmoid:
|
76 |
+
model4 += [nn.Sigmoid()]
|
77 |
+
|
78 |
+
self.model4 = nn.Sequential(*model4)
|
79 |
+
|
80 |
+
def forward(self, x, cond=None):
|
81 |
+
out = self.model0(x)
|
82 |
+
out = self.model1(out)
|
83 |
+
out = self.model2(out)
|
84 |
+
out = self.model3(out)
|
85 |
+
out = self.model4(out)
|
86 |
+
|
87 |
+
return out
|
88 |
+
|
89 |
+
# 🔧 Load the models
|
90 |
+
model1 = Generator(3, 1, 3)
|
91 |
+
model1.load_state_dict(torch.load('model.pth', map_location=torch.device('cpu')))
|
92 |
+
model1.eval()
|
93 |
+
|
94 |
+
model2 = Generator(3, 1, 3)
|
95 |
+
model2.load_state_dict(torch.load('model2.pth', map_location=torch.device('cpu')))
|
96 |
+
model2.eval()
|
97 |
+
|
98 |
+
# 🖼️ Function to process the image and create line drawing
|
99 |
+
def predict(input_img, ver):
|
100 |
+
input_img = Image.open(input_img)
|
101 |
+
transform = transforms.Compose([transforms.Resize(256, Image.BICUBIC), transforms.ToTensor()])
|
102 |
+
input_img = transform(input_img)
|
103 |
+
input_img = torch.unsqueeze(input_img, 0)
|
104 |
+
|
105 |
+
drawing = 0
|
106 |
+
with torch.no_grad():
|
107 |
+
if ver == 'Simple Lines':
|
108 |
+
drawing = model2(input_img)[0].detach()
|
109 |
+
else:
|
110 |
+
drawing = model1(input_img)[0].detach()
|
111 |
+
|
112 |
+
drawing = transforms.ToPILImage()(drawing)
|
113 |
+
return drawing
|
114 |
+
|
115 |
+
# 📝 Title for the Gradio interface
|
116 |
+
title="🖌️ Image to Line Drawings - Complex and Simple Portraits and Landscapes"
|
117 |
+
|
118 |
+
# 🖼️ Dynamically generate examples from images in the directory
|
119 |
+
examples = []
|
120 |
+
image_dir = '.' # Assuming images are in the current directory
|
121 |
+
for file in os.listdir(image_dir):
|
122 |
+
if file.lower().endswith(('.png', '.jpg', '.jpeg', '.gif')):
|
123 |
+
examples.append([file, 'Simple Lines'])
|
124 |
+
examples.append([file, 'Complex Lines'])
|
125 |
+
|
126 |
+
# 🚀 Create and launch the Gradio interface
|
127 |
+
iface = gr.Interface(predict, [gr.inputs.Image(type='filepath'),
|
128 |
+
gr.inputs.Radio(['Complex Lines','Simple Lines'], type="value", default='Simple Lines', label='version')],
|
129 |
+
gr.outputs.Image(type="pil"), title=title, examples=examples)
|
130 |
+
|
131 |
+
iface.launch()
|