awacke1's picture
Update app.py
ada13b7
from huggingface_hub import InferenceClient
import gradio as gr
client = InferenceClient(
"mistralai/Mistral-7B-Instruct-v0.1"
)
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(
prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(prompt, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
additional_inputs=[
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=1048,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
css = """
#mkd {
height: 200px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.ChatInterface(
generate,
additional_inputs=additional_inputs,
examples = [
["🎸 Show full verse, chorus, intro, and outro chords and lyrics for top 3 Everclear songs. 🎀"],
["🎡 Show full verse, chorus, intro, and outro chords and lyrics for top 3 Taylor Swift songs. 🎢"],
["πŸŽ™οΈ Show full verse, chorus, intro, and outro chords and lyrics for top 3 Adele songs. 🎧"],
["🎼 Show full verse, chorus, intro, and outro chords and lyrics for top 3 Bruno Mars songs. 🎷"],
["🎹 Show full verse, chorus, intro, and outro chords and lyrics for top 3 Lady Gaga songs. 🎺"],
["🎻 Show full verse, chorus, intro, and outro chords and lyrics for top 3 Ed Sheeran songs. πŸ₯"],
["🎀 Show full verse, chorus, intro, and outro chords and lyrics for top 3 Drake songs. 🎢"],
["🎧 Show full verse, chorus, intro, and outro chords and lyrics for top 3 Rihanna songs. 🎡"],
["🎷 Show full verse, chorus, intro, and outro chords and lyrics for top 3 Justin Bieber songs. 🎼"],
["🎢 Show full verse, chorus, intro, and outro chords and lyrics for top 3 BeyoncΓ© songs. πŸŽ™οΈ"],
["🎺 Show full verse, chorus, intro, and outro chords and lyrics for top 3 Katy Perry songs. 🎹"],
["πŸ₯ Show full verse, chorus, intro, and outro chords and lyrics for top 3 Eminem songs. 🎻"],
["🎀 Show full verse, chorus, intro, and outro chords and lyrics for top 3 Ariana Grande songs. 🎧"]
]
)
gr.HTML("""<h2>πŸ€– Mistral Chat - Gradio πŸ€–</h2>
In this demo, you can chat with <a href='https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1'>Mistral-7B-Instruct</a> model. πŸ’¬
Learn more about the model <a href='https://huggingface.co/docs/transformers/main/model_doc/mistral'>here</a>. πŸ“š
<h2>πŸ›  Model Features πŸ› </h2>
<ul>
<li>πŸͺŸ Sliding Window Attention with 128K tokens span</li>
<li>πŸš€ GQA for faster inference</li>
<li>πŸ“ Byte-fallback BPE tokenizer</li>
</ul>
<h3>πŸ“œ License πŸ“œ Released under Apache 2.0 License</h3>
<h3>πŸ“¦ Usage πŸ“¦</h3>
<ul>
<li>πŸ“š Available on Huggingface Hub</li>
<li>🐍 Python code snippets for easy setup</li>
<li>πŸ“ˆ Expected speedups with Flash Attention 2</li>
</ul>
""")
markdown="""
| Feature | Description | Byline |
|---------|-------------|--------|
| πŸͺŸ Sliding Window Attention with 128K tokens span | Enables the model to have a larger context for each token. | Increases model's understanding of context, resulting in more coherent and contextually relevant outputs. |
| πŸš€ GQA for faster inference | Graph Query Attention allows faster computation during inference. | Speeds up the model inference time without sacrificing too much on accuracy. |
| πŸ“ Byte-fallback BPE tokenizer | Uses Byte Pair Encoding but can fall back to byte-level encoding. | Allows the tokenizer to handle a wider variety of input text while keeping token size manageable. |
| πŸ“œ License | Released under Apache 2.0 License | Gives you a permissive free software license, allowing you freedom to use, modify, and distribute the code. |
| πŸ“¦ Usage | | |
| πŸ“š Available on Huggingface Hub | The model can be easily downloaded and set up from Huggingface. | Makes it easier to integrate the model into various projects. |
| 🐍 Python code snippets for easy setup | Provides Python code snippets for quick and easy model setup. | Facilitates rapid development and deployment, especially useful for prototyping. |
| πŸ“ˆ Expected speedups with Flash Attention 2 | Upcoming update expected to bring speed improvements. | Keep an eye out for this update to benefit from performance gains. |
# πŸ›  Model Features and More πŸ› 
## Features
- πŸͺŸ Sliding Window Attention with 128K tokens span
- **Byline**: Increases model's understanding of context, resulting in more coherent and contextually relevant outputs.
- πŸš€ GQA for faster inference
- **Byline**: Speeds up the model inference time without sacrificing too much on accuracy.
- πŸ“ Byte-fallback BPE tokenizer
- **Byline**: Allows the tokenizer to handle a wider variety of input text while keeping token size manageable.
- πŸ“œ License: Released under Apache 2.0 License
- **Byline**: Gives you a permissive free software license, allowing you freedom to use, modify, and distribute the code.
## Usage πŸ“¦
- πŸ“š Available on Huggingface Hub
- **Byline**: Makes it easier to integrate the model into various projects.
- 🐍 Python code snippets for easy setup
- **Byline**: Facilitates rapid development and deployment, especially useful for prototyping.
- πŸ“ˆ Expected speedups with Flash Attention 2
- **Byline**: Keep an eye out for this update to benefit from performance gains.
"""
gr.Markdown(markdown)
def SpeechSynthesis(result):
documentHTML5='''
<!DOCTYPE html>
<html>
<head>
<title>Read It Aloud</title>
<script type="text/javascript">
function readAloud() {
const text = document.getElementById("textArea").value;
const speech = new SpeechSynthesisUtterance(text);
window.speechSynthesis.speak(speech);
}
</script>
</head>
<body>
<h1>πŸ”Š Read It Aloud</h1>
<textarea id="textArea" rows="10" cols="80">
'''
documentHTML5 = documentHTML5 + result
documentHTML5 = documentHTML5 + '''
</textarea>
<br>
<button onclick="readAloud()">πŸ”Š Read Aloud</button>
</body>
</html>
'''
gr.HTML(documentHTML5)
# components.html(documentHTML5, width=1280, height=1024)
#return result
SpeechSynthesis(markdown)
demo.queue().launch(debug=True)