SelfTaughtReasonerAI / backup2.app.py
awacke1's picture
Rename app.py to backup2.app.py
a96f1fb verified
import os
import streamlit as st
import openai
import pandas as pd
import time
from typing import List, Tuple
from uuid import uuid4
# πŸ”‘ Set the OpenAI API key from an environment variable
openai.api_key = os.getenv("OPENAI_API_KEY")
# πŸ†” Function to generate a unique session ID for caching
def get_session_id():
if 'session_id' not in st.session_state:
st.session_state.session_id = str(uuid4())
return st.session_state.session_id
# 🧠 STaR Algorithm Implementation
class SelfTaughtReasoner:
def __init__(self, model_engine="text-davinci-003"):
self.model_engine = model_engine
self.prompt_examples = []
self.iterations = 0
self.generated_data = pd.DataFrame(columns=['Problem', 'Rationale', 'Answer', 'Is_Correct'])
self.rationalized_data = pd.DataFrame(columns=['Problem', 'Rationale', 'Answer', 'Is_Correct'])
self.fine_tuned_model = None # πŸ—οΈ Placeholder for fine-tuned model
def add_prompt_example(self, problem: str, rationale: str, answer: str):
"""
βž• Adds a prompt example to the few-shot examples.
"""
self.prompt_examples.append({
'Problem': problem,
'Rationale': rationale,
'Answer': answer
})
def construct_prompt(self, problem: str, include_answer: bool = False, answer: str = "") -> str:
"""
πŸ“ Constructs the prompt for the OpenAI API call.
"""
prompt = ""
for example in self.prompt_examples:
prompt += f"Problem: {example['Problem']}\n"
prompt += f"Rationale: {example['Rationale']}\n"
prompt += f"Answer: {example['Answer']}\n\n"
prompt += f"Problem: {problem}\n"
if include_answer:
prompt += f"Answer (as hint): {answer}\n"
prompt += "Rationale:"
return prompt
def generate_rationale_and_answer(self, problem: str) -> Tuple[str, str]:
"""
πŸ€” Generates a rationale and answer for a given problem.
"""
prompt = self.construct_prompt(problem)
try:
response = openai.Completion.create(
engine=self.model_engine,
prompt=prompt,
max_tokens=150,
temperature=0.7,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
stop=["\n\n", "Problem:", "Answer:"]
)
rationale = response.choices[0].text.strip()
# πŸ“ Now generate the answer using the rationale
prompt += f" {rationale}\nAnswer:"
answer_response = openai.Completion.create(
engine=self.model_engine,
prompt=prompt,
max_tokens=10,
temperature=0,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
stop=["\n", "\n\n", "Problem:"]
)
answer = answer_response.choices[0].text.strip()
return rationale, answer
except Exception as e:
st.error(f"❌ Error generating rationale and answer: {e}")
return "", ""
def rationalize(self, problem: str, correct_answer: str) -> Tuple[str, str]:
"""
🧐 Generates a rationale for a given problem using the correct answer as a hint.
"""
prompt = self.construct_prompt(problem, include_answer=True, answer=correct_answer)
try:
response = openai.Completion.create(
engine=self.model_engine,
prompt=prompt,
max_tokens=150,
temperature=0.7,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
stop=["\n\n", "Problem:", "Answer:"]
)
rationale = response.choices[0].text.strip()
# πŸ“ Now generate the answer using the rationale
prompt += f" {rationale}\nAnswer:"
answer_response = openai.Completion.create(
engine=self.model_engine,
prompt=prompt,
max_tokens=10,
temperature=0,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
stop=["\n", "\n\n", "Problem:"]
)
answer = answer_response.choices[0].text.strip()
return rationale, answer
except Exception as e:
st.error(f"❌ Error during rationalization: {e}")
return "", ""
def fine_tune_model(self):
"""
πŸ› οΈ Fine-tunes the model on the generated rationales.
This is a placeholder function as fine-tuning would require
training a new model which is beyond the scope of this app.
"""
# πŸ”„ In actual implementation, you would prepare the training data
# and use OpenAI's fine-tuning API or other methods to fine-tune
# the model. For demonstration, we'll just simulate the process.
time.sleep(1) # ⏳ Simulate time taken for fine-tuning
self.fine_tuned_model = f"{self.model_engine}-fine-tuned-{get_session_id()}"
st.success(f"βœ… Model fine-tuned: {self.fine_tuned_model}")
def run_iteration(self, dataset: pd.DataFrame):
"""
πŸ”„ Runs one iteration of the STaR process.
"""
st.write(f"### Iteration {self.iterations + 1}")
progress_bar = st.progress(0)
total = len(dataset)
for idx, row in dataset.iterrows():
problem = row['Problem']
correct_answer = row['Answer']
# πŸ€– Generate rationale and answer
rationale, answer = self.generate_rationale_and_answer(problem)
is_correct = (answer.lower() == correct_answer.lower())
# πŸ“ Record the generated data
self.generated_data = self.generated_data.append({
'Problem': problem,
'Rationale': rationale,
'Answer': answer,
'Is_Correct': is_correct
}, ignore_index=True)
# ❌ If incorrect, perform rationalization
if not is_correct:
rationale, answer = self.rationalize(problem, correct_answer)
is_correct = (answer.lower() == correct_answer.lower())
if is_correct:
self.rationalized_data = self.rationalized_data.append({
'Problem': problem,
'Rationale': rationale,
'Answer': answer,
'Is_Correct': is_correct
}, ignore_index=True)
progress_bar.progress((idx + 1) / total)
# πŸ”§ Fine-tune the model on correct rationales
st.write("πŸ”„ Fine-tuning the model on correct rationales...")
self.fine_tune_model()
self.iterations += 1
# πŸ–₯️ Streamlit App
def main():
st.title("πŸ€– Self-Taught Reasoner (STaR) Demonstration")
st.write("""
This app demonstrates the **Self-Taught Reasoner (STaR)** workflow. Enter problems to solve, and see how the model generates rationales, filters correct answers, and fine-tunes itself iteratively.
""")
# 🧩 Initialize the Self-Taught Reasoner
if 'star' not in st.session_state:
st.session_state.star = SelfTaughtReasoner()
star = st.session_state.star
# πŸ“š Section to add few-shot prompt examples
st.header("πŸ”Ή Step 1: Add Few-Shot Prompt Examples")
st.write("Provide a few examples with problems, rationales, and answers to bootstrap the reasoning process.")
with st.form(key='prompt_form'):
example_problem = st.text_area("πŸ“ Example Problem", height=100)
example_rationale = st.text_area("🧠 Example Rationale", height=150)
example_answer = st.text_input("βœ… Example Answer")
submit_example = st.form_submit_button("βž• Add Example")
if submit_example:
if not example_problem or not example_rationale or not example_answer:
st.warning("⚠️ Please fill in all fields to add an example.")
else:
star.add_prompt_example(example_problem, example_rationale, example_answer)
st.success("πŸŽ‰ Example added.")
if star.prompt_examples:
st.subheader("πŸ“Œ Current Prompt Examples:")
for idx, example in enumerate(star.prompt_examples):
st.write(f"**πŸ“š Example {idx + 1}:**")
st.markdown(f"**Problem:**\n{example['Problem']}")
st.markdown(f"**Rationale:**\n{example['Rationale']}")
st.markdown(f"**Answer:**\n{example['Answer']}")
# πŸ” Section to input dataset
st.header("πŸ”Ή Step 2: Input Dataset")
st.write("Provide a dataset of problems and correct answers for the STaR process.")
dataset_input_method = st.radio("πŸ“₯ How would you like to input the dataset?", ("Manual Entry", "Upload CSV"))
if dataset_input_method == "Manual Entry":
with st.form(key='dataset_form'):
dataset_problems = st.text_area("πŸ“ Enter problems and answers in the format 'Problem | Answer', one per line.", height=200)
submit_dataset = st.form_submit_button("πŸ“€ Submit Dataset")
if submit_dataset:
if not dataset_problems:
st.warning("⚠️ Please enter at least one problem and answer.")
else:
dataset = []
lines = dataset_problems.strip().split('\n')
for line in lines:
if '|' in line:
problem, answer = line.split('|', 1)
dataset.append({'Problem': problem.strip(), 'Answer': answer.strip()})
else:
st.error(f"❌ Invalid format in line: {line}")
if dataset:
st.session_state.dataset = pd.DataFrame(dataset)
st.success("βœ… Dataset loaded.")
else:
uploaded_file = st.file_uploader("πŸ“‚ Upload a CSV file with 'Problem' and 'Answer' columns.", type=['csv'])
if uploaded_file:
try:
st.session_state.dataset = pd.read_csv(uploaded_file)
if 'Problem' not in st.session_state.dataset.columns or 'Answer' not in st.session_state.dataset.columns:
st.error("❌ CSV must contain 'Problem' and 'Answer' columns.")
del st.session_state.dataset
else:
st.success("βœ… Dataset loaded.")
except Exception as e:
st.error(f"❌ Error loading CSV: {e}")
if 'dataset' in st.session_state:
st.subheader("πŸ“Š Current Dataset:")
st.dataframe(st.session_state.dataset.head())
# πŸƒβ€β™‚οΈ Section to run the STaR process
st.header("πŸ”Ή Step 3: Run STaR Process")
num_iterations = st.number_input("πŸ”’ Number of Iterations to Run:", min_value=1, max_value=10, value=1)
run_star = st.button("πŸš€ Run STaR")
if run_star:
if not star.prompt_examples:
st.warning("⚠️ Please add at least one prompt example before running STaR.")
elif not openai.api_key:
st.warning("⚠️ OpenAI API key not found. Please set the `OPENAI_API_KEY` environment variable.")
else:
for _ in range(num_iterations):
star.run_iteration(st.session_state.dataset)
st.header("πŸ“ˆ Results")
st.subheader("🧾 Generated Data")
st.dataframe(star.generated_data)
st.subheader("🧩 Rationalized Data")
st.dataframe(star.rationalized_data)
st.write("πŸ”„ The model has been fine-tuned iteratively. You can now test it with new problems.")
# πŸ§ͺ Section to test the fine-tuned model
st.header("πŸ”Ή Step 4: Test the Fine-Tuned Model")
test_problem = st.text_area("πŸ“ Enter a new problem to solve:", height=100)
test_button = st.button("βœ… Solve Problem")
if test_button:
if not test_problem:
st.warning("⚠️ Please enter a problem to solve.")
elif not star.fine_tuned_model:
st.warning("⚠️ The model has not been fine-tuned yet. Please run the STaR process first.")
else:
# πŸ€– For demonstration, we'll use the same generate_rationale_and_answer function
# In actual implementation, you would use the fine-tuned model
st.write("πŸ”„ Generating rationale and answer using the fine-tuned model...")
rationale, answer = star.generate_rationale_and_answer(test_problem)
st.subheader("🧠 Rationale:")
st.write(rationale)
st.subheader("βœ… Answer:")
st.write(answer)
# πŸ“ Footer
st.write("---")
st.write("πŸ› οΈ Developed as a demonstration of the **STaR** method.")
if __name__ == "__main__":
main()