Spaces:
Runtime error
Runtime error
File size: 12,151 Bytes
cfb7702 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch_lightning.utilities.rank_zero import rank_zero_info
import models
from models.base import BaseModel
from models.utils import scale_anything, get_activation, cleanup, chunk_batch
from models.network_utils import get_encoding, get_mlp, get_encoding_with_network
from utils.misc import get_rank
from systems.utils import update_module_step
from nerfacc import ContractionType
def contract_to_unisphere(x, radius, contraction_type):
if contraction_type == ContractionType.AABB:
x = scale_anything(x, (-radius, radius), (0, 1))
elif contraction_type == ContractionType.UN_BOUNDED_SPHERE:
x = scale_anything(x, (-radius, radius), (0, 1))
x = x * 2 - 1 # aabb is at [-1, 1]
mag = x.norm(dim=-1, keepdim=True)
mask = mag.squeeze(-1) > 1
x[mask] = (2 - 1 / mag[mask]) * (x[mask] / mag[mask])
x = x / 4 + 0.5 # [-inf, inf] is at [0, 1]
else:
raise NotImplementedError
return x
class MarchingCubeHelper(nn.Module):
def __init__(self, resolution, use_torch=True):
super().__init__()
self.resolution = resolution
self.use_torch = use_torch
self.points_range = (0, 1)
if self.use_torch:
import torchmcubes
self.mc_func = torchmcubes.marching_cubes
else:
import mcubes
self.mc_func = mcubes.marching_cubes
self.verts = None
def grid_vertices(self):
if self.verts is None:
x, y, z = torch.linspace(*self.points_range, self.resolution), torch.linspace(*self.points_range, self.resolution), torch.linspace(*self.points_range, self.resolution)
x, y, z = torch.meshgrid(x, y, z, indexing='ij')
verts = torch.cat([x.reshape(-1, 1), y.reshape(-1, 1), z.reshape(-1, 1)], dim=-1).reshape(-1, 3)
self.verts = verts
return self.verts
def forward(self, level, threshold=0.):
level = level.float().view(self.resolution, self.resolution, self.resolution)
if self.use_torch:
verts, faces = self.mc_func(level.to(get_rank()), threshold)
verts, faces = verts.cpu(), faces.cpu().long()
else:
verts, faces = self.mc_func(-level.numpy(), threshold) # transform to numpy
verts, faces = torch.from_numpy(verts.astype(np.float32)), torch.from_numpy(faces.astype(np.int64)) # transform back to pytorch
verts = verts / (self.resolution - 1.)
return {
'v_pos': verts,
't_pos_idx': faces
}
class BaseImplicitGeometry(BaseModel):
def __init__(self, config):
super().__init__(config)
if self.config.isosurface is not None:
assert self.config.isosurface.method in ['mc', 'mc-torch']
if self.config.isosurface.method == 'mc-torch':
raise NotImplementedError("Please do not use mc-torch. It currently has some scaling issues I haven't fixed yet.")
self.helper = MarchingCubeHelper(self.config.isosurface.resolution, use_torch=self.config.isosurface.method=='mc-torch')
self.radius = self.config.radius
self.contraction_type = None # assigned in system
def forward_level(self, points):
raise NotImplementedError
def isosurface_(self, vmin, vmax):
def batch_func(x):
x = torch.stack([
scale_anything(x[...,0], (0, 1), (vmin[0], vmax[0])),
scale_anything(x[...,1], (0, 1), (vmin[1], vmax[1])),
scale_anything(x[...,2], (0, 1), (vmin[2], vmax[2])),
], dim=-1).to(self.rank)
rv = self.forward_level(x).cpu()
cleanup()
return rv
level = chunk_batch(batch_func, self.config.isosurface.chunk, True, self.helper.grid_vertices())
mesh = self.helper(level, threshold=self.config.isosurface.threshold)
mesh['v_pos'] = torch.stack([
scale_anything(mesh['v_pos'][...,0], (0, 1), (vmin[0], vmax[0])),
scale_anything(mesh['v_pos'][...,1], (0, 1), (vmin[1], vmax[1])),
scale_anything(mesh['v_pos'][...,2], (0, 1), (vmin[2], vmax[2]))
], dim=-1)
return mesh
@torch.no_grad()
def isosurface(self):
if self.config.isosurface is None:
raise NotImplementedError
mesh_coarse = self.isosurface_((-self.radius, -self.radius, -self.radius), (self.radius, self.radius, self.radius))
vmin, vmax = mesh_coarse['v_pos'].amin(dim=0), mesh_coarse['v_pos'].amax(dim=0)
vmin_ = (vmin - (vmax - vmin) * 0.1).clamp(-self.radius, self.radius)
vmax_ = (vmax + (vmax - vmin) * 0.1).clamp(-self.radius, self.radius)
mesh_fine = self.isosurface_(vmin_, vmax_)
return mesh_fine
@models.register('volume-density')
class VolumeDensity(BaseImplicitGeometry):
def setup(self):
self.n_input_dims = self.config.get('n_input_dims', 3)
self.n_output_dims = self.config.feature_dim
self.encoding_with_network = get_encoding_with_network(self.n_input_dims, self.n_output_dims, self.config.xyz_encoding_config, self.config.mlp_network_config)
def forward(self, points):
points = contract_to_unisphere(points, self.radius, self.contraction_type)
out = self.encoding_with_network(points.view(-1, self.n_input_dims)).view(*points.shape[:-1], self.n_output_dims).float()
density, feature = out[...,0], out
if 'density_activation' in self.config:
density = get_activation(self.config.density_activation)(density + float(self.config.density_bias))
if 'feature_activation' in self.config:
feature = get_activation(self.config.feature_activation)(feature)
return density, feature
def forward_level(self, points):
points = contract_to_unisphere(points, self.radius, self.contraction_type)
density = self.encoding_with_network(points.reshape(-1, self.n_input_dims)).reshape(*points.shape[:-1], self.n_output_dims)[...,0]
if 'density_activation' in self.config:
density = get_activation(self.config.density_activation)(density + float(self.config.density_bias))
return -density
def update_step(self, epoch, global_step):
update_module_step(self.encoding_with_network, epoch, global_step)
@models.register('volume-sdf')
class VolumeSDF(BaseImplicitGeometry):
def setup(self):
self.n_output_dims = self.config.feature_dim
encoding = get_encoding(3, self.config.xyz_encoding_config)
network = get_mlp(encoding.n_output_dims, self.n_output_dims, self.config.mlp_network_config)
self.encoding, self.network = encoding, network
self.grad_type = self.config.grad_type
self.finite_difference_eps = self.config.get('finite_difference_eps', 1e-3)
# the actual value used in training
# will update at certain steps if finite_difference_eps="progressive"
self._finite_difference_eps = None
if self.grad_type == 'finite_difference':
rank_zero_info(f"Using finite difference to compute gradients with eps={self.finite_difference_eps}")
def forward(self, points, with_grad=True, with_feature=True, with_laplace=False):
with torch.inference_mode(torch.is_inference_mode_enabled() and not (with_grad and self.grad_type == 'analytic')):
with torch.set_grad_enabled(self.training or (with_grad and self.grad_type == 'analytic')):
if with_grad and self.grad_type == 'analytic':
if not self.training:
points = points.clone() # points may be in inference mode, get a copy to enable grad
points.requires_grad_(True)
points_ = points # points in the original scale
points = contract_to_unisphere(points, self.radius, self.contraction_type) # points normalized to (0, 1)
out = self.network(self.encoding(points.view(-1, 3))).view(*points.shape[:-1], self.n_output_dims).float()
sdf, feature = out[...,0], out
if 'sdf_activation' in self.config:
sdf = get_activation(self.config.sdf_activation)(sdf + float(self.config.sdf_bias))
if 'feature_activation' in self.config:
feature = get_activation(self.config.feature_activation)(feature)
if with_grad:
if self.grad_type == 'analytic':
grad = torch.autograd.grad(
sdf, points_, grad_outputs=torch.ones_like(sdf),
create_graph=True, retain_graph=True, only_inputs=True
)[0]
elif self.grad_type == 'finite_difference':
eps = self._finite_difference_eps
offsets = torch.as_tensor(
[
[eps, 0.0, 0.0],
[-eps, 0.0, 0.0],
[0.0, eps, 0.0],
[0.0, -eps, 0.0],
[0.0, 0.0, eps],
[0.0, 0.0, -eps],
]
).to(points_)
points_d_ = (points_[...,None,:] + offsets).clamp(-self.radius, self.radius)
points_d = scale_anything(points_d_, (-self.radius, self.radius), (0, 1))
points_d_sdf = self.network(self.encoding(points_d.view(-1, 3)))[...,0].view(*points.shape[:-1], 6).float()
grad = 0.5 * (points_d_sdf[..., 0::2] - points_d_sdf[..., 1::2]) / eps
if with_laplace:
laplace = (points_d_sdf[..., 0::2] + points_d_sdf[..., 1::2] - 2 * sdf[..., None]).sum(-1) / (eps ** 2)
rv = [sdf]
if with_grad:
rv.append(grad)
if with_feature:
rv.append(feature)
if with_laplace:
assert self.config.grad_type == 'finite_difference', "Laplace computation is only supported with grad_type='finite_difference'"
rv.append(laplace)
rv = [v if self.training else v.detach() for v in rv]
return rv[0] if len(rv) == 1 else rv
def forward_level(self, points):
points = contract_to_unisphere(points, self.radius, self.contraction_type) # points normalized to (0, 1)
sdf = self.network(self.encoding(points.view(-1, 3))).view(*points.shape[:-1], self.n_output_dims)[...,0]
if 'sdf_activation' in self.config:
sdf = get_activation(self.config.sdf_activation)(sdf + float(self.config.sdf_bias))
return sdf
def update_step(self, epoch, global_step):
update_module_step(self.encoding, epoch, global_step)
update_module_step(self.network, epoch, global_step)
if self.grad_type == 'finite_difference':
if isinstance(self.finite_difference_eps, float):
self._finite_difference_eps = self.finite_difference_eps
elif self.finite_difference_eps == 'progressive':
hg_conf = self.config.xyz_encoding_config
assert hg_conf.otype == "ProgressiveBandHashGrid", "finite_difference_eps='progressive' only works with ProgressiveBandHashGrid"
current_level = min(
hg_conf.start_level + max(global_step - hg_conf.start_step, 0) // hg_conf.update_steps,
hg_conf.n_levels
)
grid_res = hg_conf.base_resolution * hg_conf.per_level_scale**(current_level - 1)
grid_size = 2 * self.config.radius / grid_res
if grid_size != self._finite_difference_eps:
rank_zero_info(f"Update finite_difference_eps to {grid_size}")
self._finite_difference_eps = grid_size
else:
raise ValueError(f"Unknown finite_difference_eps={self.finite_difference_eps}")
|