File size: 12,151 Bytes
cfb7702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from pytorch_lightning.utilities.rank_zero import rank_zero_info

import models
from models.base import BaseModel
from models.utils import scale_anything, get_activation, cleanup, chunk_batch
from models.network_utils import get_encoding, get_mlp, get_encoding_with_network
from utils.misc import get_rank
from systems.utils import update_module_step
from nerfacc import ContractionType


def contract_to_unisphere(x, radius, contraction_type):
    if contraction_type == ContractionType.AABB:
        x = scale_anything(x, (-radius, radius), (0, 1))
    elif contraction_type == ContractionType.UN_BOUNDED_SPHERE:
        x = scale_anything(x, (-radius, radius), (0, 1))
        x = x * 2 - 1  # aabb is at [-1, 1]
        mag = x.norm(dim=-1, keepdim=True)
        mask = mag.squeeze(-1) > 1
        x[mask] = (2 - 1 / mag[mask]) * (x[mask] / mag[mask])
        x = x / 4 + 0.5  # [-inf, inf] is at [0, 1]
    else:
        raise NotImplementedError
    return x


class MarchingCubeHelper(nn.Module):
    def __init__(self, resolution, use_torch=True):
        super().__init__()
        self.resolution = resolution
        self.use_torch = use_torch
        self.points_range = (0, 1)
        if self.use_torch:
            import torchmcubes
            self.mc_func = torchmcubes.marching_cubes
        else:
            import mcubes
            self.mc_func = mcubes.marching_cubes
        self.verts = None

    def grid_vertices(self):
        if self.verts is None:
            x, y, z = torch.linspace(*self.points_range, self.resolution), torch.linspace(*self.points_range, self.resolution), torch.linspace(*self.points_range, self.resolution)
            x, y, z = torch.meshgrid(x, y, z, indexing='ij')
            verts = torch.cat([x.reshape(-1, 1), y.reshape(-1, 1), z.reshape(-1, 1)], dim=-1).reshape(-1, 3)
            self.verts = verts
        return self.verts

    def forward(self, level, threshold=0.):
        level = level.float().view(self.resolution, self.resolution, self.resolution)
        if self.use_torch:
            verts, faces = self.mc_func(level.to(get_rank()), threshold)
            verts, faces = verts.cpu(), faces.cpu().long()
        else:
            verts, faces = self.mc_func(-level.numpy(), threshold) # transform to numpy
            verts, faces = torch.from_numpy(verts.astype(np.float32)), torch.from_numpy(faces.astype(np.int64)) # transform back to pytorch
        verts = verts / (self.resolution - 1.)
        return {
            'v_pos': verts,
            't_pos_idx': faces
        }


class BaseImplicitGeometry(BaseModel):
    def __init__(self, config):
        super().__init__(config)
        if self.config.isosurface is not None:
            assert self.config.isosurface.method in ['mc', 'mc-torch']
            if self.config.isosurface.method == 'mc-torch':
                raise NotImplementedError("Please do not use mc-torch. It currently has some scaling issues I haven't fixed yet.")
            self.helper = MarchingCubeHelper(self.config.isosurface.resolution, use_torch=self.config.isosurface.method=='mc-torch')
        self.radius = self.config.radius
        self.contraction_type = None # assigned in system

    def forward_level(self, points):
        raise NotImplementedError

    def isosurface_(self, vmin, vmax):
        def batch_func(x):
            x = torch.stack([
                scale_anything(x[...,0], (0, 1), (vmin[0], vmax[0])),
                scale_anything(x[...,1], (0, 1), (vmin[1], vmax[1])),
                scale_anything(x[...,2], (0, 1), (vmin[2], vmax[2])),
            ], dim=-1).to(self.rank)
            rv = self.forward_level(x).cpu()
            cleanup()
            return rv
    
        level = chunk_batch(batch_func, self.config.isosurface.chunk, True, self.helper.grid_vertices())
        mesh = self.helper(level, threshold=self.config.isosurface.threshold)
        mesh['v_pos'] = torch.stack([
            scale_anything(mesh['v_pos'][...,0], (0, 1), (vmin[0], vmax[0])),
            scale_anything(mesh['v_pos'][...,1], (0, 1), (vmin[1], vmax[1])),
            scale_anything(mesh['v_pos'][...,2], (0, 1), (vmin[2], vmax[2]))
        ], dim=-1)
        return mesh

    @torch.no_grad()
    def isosurface(self):
        if self.config.isosurface is None:
            raise NotImplementedError
        mesh_coarse = self.isosurface_((-self.radius, -self.radius, -self.radius), (self.radius, self.radius, self.radius))
        vmin, vmax = mesh_coarse['v_pos'].amin(dim=0), mesh_coarse['v_pos'].amax(dim=0)
        vmin_ = (vmin - (vmax - vmin) * 0.1).clamp(-self.radius, self.radius)
        vmax_ = (vmax + (vmax - vmin) * 0.1).clamp(-self.radius, self.radius)
        mesh_fine = self.isosurface_(vmin_, vmax_)
        return mesh_fine 


@models.register('volume-density')
class VolumeDensity(BaseImplicitGeometry):
    def setup(self):
        self.n_input_dims = self.config.get('n_input_dims', 3)
        self.n_output_dims = self.config.feature_dim
        self.encoding_with_network = get_encoding_with_network(self.n_input_dims, self.n_output_dims, self.config.xyz_encoding_config, self.config.mlp_network_config)

    def forward(self, points):
        points = contract_to_unisphere(points, self.radius, self.contraction_type)
        out = self.encoding_with_network(points.view(-1, self.n_input_dims)).view(*points.shape[:-1], self.n_output_dims).float()
        density, feature = out[...,0], out
        if 'density_activation' in self.config:
            density = get_activation(self.config.density_activation)(density + float(self.config.density_bias))
        if 'feature_activation' in self.config:
            feature = get_activation(self.config.feature_activation)(feature)
        return density, feature

    def forward_level(self, points):
        points = contract_to_unisphere(points, self.radius, self.contraction_type)
        density = self.encoding_with_network(points.reshape(-1, self.n_input_dims)).reshape(*points.shape[:-1], self.n_output_dims)[...,0]
        if 'density_activation' in self.config:
            density = get_activation(self.config.density_activation)(density + float(self.config.density_bias))
        return -density      

    def update_step(self, epoch, global_step):
        update_module_step(self.encoding_with_network, epoch, global_step)


@models.register('volume-sdf')
class VolumeSDF(BaseImplicitGeometry):
    def setup(self):
        self.n_output_dims = self.config.feature_dim
        encoding = get_encoding(3, self.config.xyz_encoding_config)
        network = get_mlp(encoding.n_output_dims, self.n_output_dims, self.config.mlp_network_config)
        self.encoding, self.network = encoding, network
        self.grad_type = self.config.grad_type
        self.finite_difference_eps = self.config.get('finite_difference_eps', 1e-3)
        # the actual value used in training
        # will update at certain steps if finite_difference_eps="progressive"
        self._finite_difference_eps = None
        if self.grad_type == 'finite_difference':
            rank_zero_info(f"Using finite difference to compute gradients with eps={self.finite_difference_eps}")

    def forward(self, points, with_grad=True, with_feature=True, with_laplace=False):
        with torch.inference_mode(torch.is_inference_mode_enabled() and not (with_grad and self.grad_type == 'analytic')):
            with torch.set_grad_enabled(self.training or (with_grad and self.grad_type == 'analytic')):
                if with_grad and self.grad_type == 'analytic':
                    if not self.training:
                        points = points.clone() # points may be in inference mode, get a copy to enable grad
                    points.requires_grad_(True)

                points_ = points # points in the original scale
                points = contract_to_unisphere(points, self.radius, self.contraction_type) # points normalized to (0, 1)
                
                out = self.network(self.encoding(points.view(-1, 3))).view(*points.shape[:-1], self.n_output_dims).float()
                sdf, feature = out[...,0], out
                if 'sdf_activation' in self.config:
                    sdf = get_activation(self.config.sdf_activation)(sdf + float(self.config.sdf_bias))
                if 'feature_activation' in self.config:
                    feature = get_activation(self.config.feature_activation)(feature)
                if with_grad:
                    if self.grad_type == 'analytic':
                        grad = torch.autograd.grad(
                            sdf, points_, grad_outputs=torch.ones_like(sdf),
                            create_graph=True, retain_graph=True, only_inputs=True
                        )[0]
                    elif self.grad_type == 'finite_difference':
                        eps = self._finite_difference_eps
                        offsets = torch.as_tensor(
                            [
                                [eps, 0.0, 0.0],
                                [-eps, 0.0, 0.0],
                                [0.0, eps, 0.0],
                                [0.0, -eps, 0.0],
                                [0.0, 0.0, eps],
                                [0.0, 0.0, -eps],
                            ]
                        ).to(points_)
                        points_d_ = (points_[...,None,:] + offsets).clamp(-self.radius, self.radius)
                        points_d = scale_anything(points_d_, (-self.radius, self.radius), (0, 1))
                        points_d_sdf = self.network(self.encoding(points_d.view(-1, 3)))[...,0].view(*points.shape[:-1], 6).float()
                        grad = 0.5 * (points_d_sdf[..., 0::2] - points_d_sdf[..., 1::2]) / eps  

                        if with_laplace:
                            laplace = (points_d_sdf[..., 0::2] + points_d_sdf[..., 1::2] - 2 * sdf[..., None]).sum(-1) / (eps ** 2)

        rv = [sdf]
        if with_grad:
            rv.append(grad)
        if with_feature:
            rv.append(feature)
        if with_laplace:
            assert self.config.grad_type == 'finite_difference', "Laplace computation is only supported with grad_type='finite_difference'"
            rv.append(laplace)
        rv = [v if self.training else v.detach() for v in rv]
        return rv[0] if len(rv) == 1 else rv

    def forward_level(self, points):
        points = contract_to_unisphere(points, self.radius, self.contraction_type) # points normalized to (0, 1)
        sdf = self.network(self.encoding(points.view(-1, 3))).view(*points.shape[:-1], self.n_output_dims)[...,0]
        if 'sdf_activation' in self.config:
            sdf = get_activation(self.config.sdf_activation)(sdf + float(self.config.sdf_bias))
        return sdf

    def update_step(self, epoch, global_step):
        update_module_step(self.encoding, epoch, global_step)    
        update_module_step(self.network, epoch, global_step)  
        if self.grad_type == 'finite_difference':
            if isinstance(self.finite_difference_eps, float):
                self._finite_difference_eps = self.finite_difference_eps
            elif self.finite_difference_eps == 'progressive':
                hg_conf = self.config.xyz_encoding_config
                assert hg_conf.otype == "ProgressiveBandHashGrid", "finite_difference_eps='progressive' only works with ProgressiveBandHashGrid"
                current_level = min(
                    hg_conf.start_level + max(global_step - hg_conf.start_step, 0) // hg_conf.update_steps,
                    hg_conf.n_levels
                )
                grid_res = hg_conf.base_resolution * hg_conf.per_level_scale**(current_level - 1)
                grid_size = 2 * self.config.radius / grid_res
                if grid_size != self._finite_difference_eps:
                    rank_zero_info(f"Update finite_difference_eps to {grid_size}")
                self._finite_difference_eps = grid_size
            else:
                raise ValueError(f"Unknown finite_difference_eps={self.finite_difference_eps}")