Spaces:
Runtime error
Runtime error
File size: 5,116 Bytes
cfb7702 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
"""Stripped version of https://github.com/richzhang/PerceptualSimilarity/tree/master/models"""
from collections import namedtuple
import torch
import torch.nn as nn
from torchvision import models
from ..util import get_ckpt_path
class LPIPS(nn.Module):
# Learned perceptual metric
def __init__(self, use_dropout=True):
super().__init__()
self.scaling_layer = ScalingLayer()
self.chns = [64, 128, 256, 512, 512] # vg16 features
self.net = vgg16(pretrained=True, requires_grad=False)
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
self.load_from_pretrained()
for param in self.parameters():
param.requires_grad = False
def load_from_pretrained(self, name="vgg_lpips"):
ckpt = get_ckpt_path(name, "sgm/modules/autoencoding/lpips/loss")
self.load_state_dict(
torch.load(ckpt, map_location=torch.device("cpu")), strict=False
)
print("loaded pretrained LPIPS loss from {}".format(ckpt))
@classmethod
def from_pretrained(cls, name="vgg_lpips"):
if name != "vgg_lpips":
raise NotImplementedError
model = cls()
ckpt = get_ckpt_path(name)
model.load_state_dict(
torch.load(ckpt, map_location=torch.device("cpu")), strict=False
)
return model
def forward(self, input, target):
in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target))
outs0, outs1 = self.net(in0_input), self.net(in1_input)
feats0, feats1, diffs = {}, {}, {}
lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
for kk in range(len(self.chns)):
feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(
outs1[kk]
)
diffs[kk] = (feats0[kk] - feats1[kk]) ** 2
res = [
spatial_average(lins[kk].model(diffs[kk]), keepdim=True)
for kk in range(len(self.chns))
]
val = res[0]
for l in range(1, len(self.chns)):
val += res[l]
return val
class ScalingLayer(nn.Module):
def __init__(self):
super(ScalingLayer, self).__init__()
self.register_buffer(
"shift", torch.Tensor([-0.030, -0.088, -0.188])[None, :, None, None]
)
self.register_buffer(
"scale", torch.Tensor([0.458, 0.448, 0.450])[None, :, None, None]
)
def forward(self, inp):
return (inp - self.shift) / self.scale
class NetLinLayer(nn.Module):
"""A single linear layer which does a 1x1 conv"""
def __init__(self, chn_in, chn_out=1, use_dropout=False):
super(NetLinLayer, self).__init__()
layers = (
[
nn.Dropout(),
]
if (use_dropout)
else []
)
layers += [
nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False),
]
self.model = nn.Sequential(*layers)
class vgg16(torch.nn.Module):
def __init__(self, requires_grad=False, pretrained=True):
super(vgg16, self).__init__()
vgg_pretrained_features = models.vgg16(pretrained=pretrained).features
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
self.slice5 = torch.nn.Sequential()
self.N_slices = 5
for x in range(4):
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(4, 9):
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(9, 16):
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(16, 23):
self.slice4.add_module(str(x), vgg_pretrained_features[x])
for x in range(23, 30):
self.slice5.add_module(str(x), vgg_pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, X):
h = self.slice1(X)
h_relu1_2 = h
h = self.slice2(h)
h_relu2_2 = h
h = self.slice3(h)
h_relu3_3 = h
h = self.slice4(h)
h_relu4_3 = h
h = self.slice5(h)
h_relu5_3 = h
vgg_outputs = namedtuple(
"VggOutputs", ["relu1_2", "relu2_2", "relu3_3", "relu4_3", "relu5_3"]
)
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
return out
def normalize_tensor(x, eps=1e-10):
norm_factor = torch.sqrt(torch.sum(x**2, dim=1, keepdim=True))
return x / (norm_factor + eps)
def spatial_average(x, keepdim=True):
return x.mean([2, 3], keepdim=keepdim)
|