heheyas
init
cfb7702
raw
history blame
12.2 kB
import os
import re
import shutil
import numpy as np
import cv2
import imageio
from matplotlib import cm
from matplotlib.colors import LinearSegmentedColormap
import json
import torch
from utils.obj import write_obj
class SaverMixin:
@property
def save_dir(self):
return self.config.save_dir
def convert_data(self, data):
if isinstance(data, np.ndarray):
return data
elif isinstance(data, torch.Tensor):
return data.cpu().numpy()
elif isinstance(data, list):
return [self.convert_data(d) for d in data]
elif isinstance(data, dict):
return {k: self.convert_data(v) for k, v in data.items()}
else:
raise TypeError(
"Data must be in type numpy.ndarray, torch.Tensor, list or dict, getting",
type(data),
)
def get_save_path(self, filename):
save_path = os.path.join(self.save_dir, filename)
os.makedirs(os.path.dirname(save_path), exist_ok=True)
return save_path
DEFAULT_RGB_KWARGS = {"data_format": "CHW", "data_range": (0, 1)}
DEFAULT_UV_KWARGS = {
"data_format": "CHW",
"data_range": (0, 1),
"cmap": "checkerboard",
}
DEFAULT_GRAYSCALE_KWARGS = {"data_range": None, "cmap": "jet"}
def get_rgb_image_(self, img, data_format, data_range):
img = self.convert_data(img)
assert data_format in ["CHW", "HWC"]
if data_format == "CHW":
img = img.transpose(1, 2, 0)
img = img.clip(min=data_range[0], max=data_range[1])
img = ((img - data_range[0]) / (data_range[1] - data_range[0]) * 255.0).astype(
np.uint8
)
imgs = [img[..., start : start + 3] for start in range(0, img.shape[-1], 3)]
imgs = [
(
img_
if img_.shape[-1] == 3
else np.concatenate(
[
img_,
np.zeros(
(img_.shape[0], img_.shape[1], 3 - img_.shape[2]),
dtype=img_.dtype,
),
],
axis=-1,
)
)
for img_ in imgs
]
img = np.concatenate(imgs, axis=1)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
return img
def save_rgb_image(
self,
filename,
img,
data_format=DEFAULT_RGB_KWARGS["data_format"],
data_range=DEFAULT_RGB_KWARGS["data_range"],
):
img = self.get_rgb_image_(img, data_format, data_range)
cv2.imwrite(self.get_save_path(filename), img)
def get_uv_image_(self, img, data_format, data_range, cmap):
img = self.convert_data(img)
assert data_format in ["CHW", "HWC"]
if data_format == "CHW":
img = img.transpose(1, 2, 0)
img = img.clip(min=data_range[0], max=data_range[1])
img = (img - data_range[0]) / (data_range[1] - data_range[0])
assert cmap in ["checkerboard", "color"]
if cmap == "checkerboard":
n_grid = 64
mask = (img * n_grid).astype(int)
mask = (mask[..., 0] + mask[..., 1]) % 2 == 0
img = np.ones((img.shape[0], img.shape[1], 3), dtype=np.uint8) * 255
img[mask] = np.array([255, 0, 255], dtype=np.uint8)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
elif cmap == "color":
img_ = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
img_[..., 0] = (img[..., 0] * 255).astype(np.uint8)
img_[..., 1] = (img[..., 1] * 255).astype(np.uint8)
img_ = cv2.cvtColor(img_, cv2.COLOR_RGB2BGR)
img = img_
return img
def save_uv_image(
self,
filename,
img,
data_format=DEFAULT_UV_KWARGS["data_format"],
data_range=DEFAULT_UV_KWARGS["data_range"],
cmap=DEFAULT_UV_KWARGS["cmap"],
):
img = self.get_uv_image_(img, data_format, data_range, cmap)
cv2.imwrite(self.get_save_path(filename), img)
def get_grayscale_image_(self, img, data_range, cmap):
img = self.convert_data(img)
img = np.nan_to_num(img)
if data_range is None:
img = (img - img.min()) / (img.max() - img.min())
else:
img = img.clip(data_range[0], data_range[1])
img = (img - data_range[0]) / (data_range[1] - data_range[0])
assert cmap in [None, "jet", "magma"]
if cmap == None:
img = (img * 255.0).astype(np.uint8)
img = np.repeat(img[..., None], 3, axis=2)
elif cmap == "jet":
img = (img * 255.0).astype(np.uint8)
img = cv2.applyColorMap(img, cv2.COLORMAP_JET)
elif cmap == "magma":
img = 1.0 - img
base = cm.get_cmap("magma")
num_bins = 256
colormap = LinearSegmentedColormap.from_list(
f"{base.name}{num_bins}", base(np.linspace(0, 1, num_bins)), num_bins
)(np.linspace(0, 1, num_bins))[:, :3]
a = np.floor(img * 255.0)
b = (a + 1).clip(max=255.0)
f = img * 255.0 - a
a = a.astype(np.uint16).clip(0, 255)
b = b.astype(np.uint16).clip(0, 255)
img = colormap[a] + (colormap[b] - colormap[a]) * f[..., None]
img = (img * 255.0).astype(np.uint8)
return img
def save_grayscale_image(
self,
filename,
img,
data_range=DEFAULT_GRAYSCALE_KWARGS["data_range"],
cmap=DEFAULT_GRAYSCALE_KWARGS["cmap"],
):
img = self.get_grayscale_image_(img, data_range, cmap)
cv2.imwrite(self.get_save_path(filename), img)
def get_image_grid_(self, imgs):
if isinstance(imgs[0], list):
return np.concatenate([self.get_image_grid_(row) for row in imgs], axis=0)
cols = []
for col in imgs:
assert col["type"] in ["rgb", "uv", "grayscale"]
if col["type"] == "rgb":
rgb_kwargs = self.DEFAULT_RGB_KWARGS.copy()
rgb_kwargs.update(col["kwargs"])
cols.append(self.get_rgb_image_(col["img"], **rgb_kwargs))
elif col["type"] == "uv":
uv_kwargs = self.DEFAULT_UV_KWARGS.copy()
uv_kwargs.update(col["kwargs"])
cols.append(self.get_uv_image_(col["img"], **uv_kwargs))
elif col["type"] == "grayscale":
grayscale_kwargs = self.DEFAULT_GRAYSCALE_KWARGS.copy()
grayscale_kwargs.update(col["kwargs"])
cols.append(self.get_grayscale_image_(col["img"], **grayscale_kwargs))
return np.concatenate(cols, axis=1)
def save_image_grid(self, filename, imgs):
img = self.get_image_grid_(imgs)
cv2.imwrite(self.get_save_path(filename), img)
def save_image(self, filename, img):
img = self.convert_data(img)
assert img.dtype == np.uint8
if img.shape[-1] == 3:
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
elif img.shape[-1] == 4:
img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGRA)
cv2.imwrite(self.get_save_path(filename), img)
def save_cubemap(self, filename, img, data_range=(0, 1)):
img = self.convert_data(img)
assert img.ndim == 4 and img.shape[0] == 6 and img.shape[1] == img.shape[2]
imgs_full = []
for start in range(0, img.shape[-1], 3):
img_ = img[..., start : start + 3]
img_ = np.stack(
[
self.get_rgb_image_(img_[i], "HWC", data_range)
for i in range(img_.shape[0])
],
axis=0,
)
size = img_.shape[1]
placeholder = np.zeros((size, size, 3), dtype=np.float32)
img_full = np.concatenate(
[
np.concatenate(
[placeholder, img_[2], placeholder, placeholder], axis=1
),
np.concatenate([img_[1], img_[4], img_[0], img_[5]], axis=1),
np.concatenate(
[placeholder, img_[3], placeholder, placeholder], axis=1
),
],
axis=0,
)
img_full = cv2.cvtColor(img_full, cv2.COLOR_RGB2BGR)
imgs_full.append(img_full)
imgs_full = np.concatenate(imgs_full, axis=1)
cv2.imwrite(self.get_save_path(filename), imgs_full)
def save_data(self, filename, data):
data = self.convert_data(data)
if isinstance(data, dict):
if not filename.endswith(".npz"):
filename += ".npz"
np.savez(self.get_save_path(filename), **data)
else:
if not filename.endswith(".npy"):
filename += ".npy"
np.save(self.get_save_path(filename), data)
def save_state_dict(self, filename, data):
torch.save(data, self.get_save_path(filename))
def save_img_sequence(self, filename, img_dir, matcher, save_format="gif", fps=30):
assert save_format in ["gif", "mp4"]
if not filename.endswith(save_format):
filename += f".{save_format}"
matcher = re.compile(matcher)
img_dir = os.path.join(self.save_dir, img_dir)
imgs = []
for f in os.listdir(img_dir):
if matcher.search(f):
imgs.append(f)
imgs = sorted(imgs, key=lambda f: int(matcher.search(f).groups()[0]))
imgs = [cv2.imread(os.path.join(img_dir, f)) for f in imgs]
if save_format == "gif":
imgs = [cv2.cvtColor(i, cv2.COLOR_BGR2RGB) for i in imgs]
imageio.mimsave(
self.get_save_path(filename), imgs, fps=fps, palettesize=256
)
elif save_format == "mp4":
imgs = [cv2.cvtColor(i, cv2.COLOR_BGR2RGB) for i in imgs]
imageio.mimsave(self.get_save_path(filename), imgs, fps=fps)
def save_mesh(
self,
filename,
v_pos,
t_pos_idx,
v_tex=None,
t_tex_idx=None,
v_rgb=None,
ortho_scale=1,
):
v_pos, t_pos_idx = self.convert_data(v_pos), self.convert_data(t_pos_idx)
if v_rgb is not None:
v_rgb = self.convert_data(v_rgb)
if ortho_scale is not None:
print("ortho scale is: ", ortho_scale)
v_pos = v_pos * ortho_scale * 0.5
# change to front-facing
v_pos_copy = np.zeros_like(v_pos)
# v_pos_copy[:, 0] = v_pos[:, 0]
# v_pos_copy[:, 1] = v_pos[:, 2]
# v_pos_copy[:, 2] = v_pos[:, 1]
v_pos_copy[:, 0] = v_pos[:, 0]
v_pos_copy[:, 1] = v_pos[:, 1]
v_pos_copy[:, 2] = v_pos[:, 2]
import trimesh
mesh = trimesh.Trimesh(
vertices=v_pos_copy, faces=t_pos_idx, vertex_colors=v_rgb
)
trimesh.repair.fix_inversion(mesh)
mesh.export(self.get_save_path(filename))
# mesh.export(self.get_save_path(filename.replace(".obj", "-meshlab.obj")))
# v_pos_copy[:, 0] = v_pos[:, 1] * -1
# v_pos_copy[:, 1] = v_pos[:, 0]
# v_pos_copy[:, 2] = v_pos[:, 2]
# mesh = trimesh.Trimesh(
# vertices=v_pos_copy,
# faces=t_pos_idx,
# vertex_colors=v_rgb
# )
# mesh.export(self.get_save_path(filename.replace(".obj", "-blender.obj")))
# v_pos_copy[:, 0] = v_pos[:, 0]
# v_pos_copy[:, 1] = v_pos[:, 1] * -1
# v_pos_copy[:, 2] = v_pos[:, 2] * -1
# mesh = trimesh.Trimesh(
# vertices=v_pos_copy,
# faces=t_pos_idx,
# vertex_colors=v_rgb
# )
# mesh.export(self.get_save_path(filename.replace(".obj", "-opengl.obj")))
def save_file(self, filename, src_path):
shutil.copyfile(src_path, self.get_save_path(filename))
def save_json(self, filename, payload):
with open(self.get_save_path(filename), "w") as f:
f.write(json.dumps(payload))