heheyas
init
cfb7702
import os
import json
import math
import numpy as np
from PIL import Image
import torch
from torch.utils.data import Dataset, DataLoader, IterableDataset
import torchvision.transforms.functional as TF
from torchvision.utils import make_grid, save_image
from einops import rearrange
import pytorch_lightning as pl
import datasets
from models.ray_utils import get_ray_directions
from utils.misc import get_rank
from datasets.ortho import (
inv_RT,
camNormal2worldNormal,
RT_opengl2opencv,
normal_opengl2opencv,
)
from utils.dpt import DPT
def blender2midas(img):
"""Blender: rub
midas: lub
"""
img[..., 0] = -img[..., 0]
img[..., 1] = -img[..., 1]
img[..., -1] = -img[..., -1]
return img
def midas2blender(img):
"""Blender: rub
midas: lub
"""
img[..., 0] = -img[..., 0]
img[..., 1] = -img[..., 1]
img[..., -1] = -img[..., -1]
return img
class BlenderDatasetBase:
def setup(self, config, split):
self.config = config
self.rank = get_rank()
self.has_mask = True
self.apply_mask = True
dpt = DPT(device=self.rank, mode="normal")
with open(
os.path.join(
self.config.root_dir, self.config.scene, f"transforms_train.json"
),
"r",
) as f:
meta = json.load(f)
if "w" in meta and "h" in meta:
W, H = int(meta["w"]), int(meta["h"])
else:
W, H = 800, 800
if "img_wh" in self.config:
w, h = self.config.img_wh
assert round(W / w * h) == H
elif "img_downscale" in self.config:
w, h = W // self.config.img_downscale, H // self.config.img_downscale
else:
raise KeyError("Either img_wh or img_downscale should be specified.")
self.w, self.h = w, h
self.img_wh = (self.w, self.h)
# self.near, self.far = self.config.near_plane, self.config.far_plane
self.focal = (
0.5 * w / math.tan(0.5 * meta["camera_angle_x"])
) # scaled focal length
# ray directions for all pixels, same for all images (same H, W, focal)
self.directions = get_ray_directions(
self.w, self.h, self.focal, self.focal, self.w // 2, self.h // 2
).to(
self.rank
) # (h, w, 3)
self.all_c2w, self.all_images, self.all_fg_masks = [], [], []
for i, frame in enumerate(meta["frames"]):
c2w = torch.from_numpy(np.array(frame["transform_matrix"])[:3, :4])
self.all_c2w.append(c2w)
img_path = os.path.join(
self.config.root_dir,
self.config.scene,
f"{frame['file_path']}.png",
)
img = Image.open(img_path)
img = img.resize(self.img_wh, Image.BICUBIC)
img = TF.to_tensor(img).permute(1, 2, 0) # (4, h, w) => (h, w, 4)
self.all_fg_masks.append(img[..., -1]) # (h, w)
self.all_images.append(img[..., :3])
self.all_c2w, self.all_images, self.all_fg_masks = (
torch.stack(self.all_c2w, dim=0).float().to(self.rank),
torch.stack(self.all_images, dim=0).float().to(self.rank),
torch.stack(self.all_fg_masks, dim=0).float().to(self.rank),
)
self.normals = dpt(self.all_images)
self.all_masks = self.all_fg_masks.cpu().numpy() > 0.1
self.normals = self.normals * 2.0 - 1.0
self.normals = midas2blender(self.normals).cpu().numpy()
# self.normals = self.normals.cpu().numpy()
self.normals[..., 0] *= -1
self.normals[~self.all_masks] = [0, 0, 0]
normals = rearrange(self.normals, "b h w c -> b c h w")
normals = normals * 0.5 + 0.5
normals = torch.from_numpy(normals)
save_image(make_grid(normals, nrow=4), "tmp/normals.png")
# exit(0)
(
self.all_poses,
self.all_normals,
self.all_normals_world,
self.all_w2cs,
self.all_color_masks,
) = ([], [], [], [], [])
for c2w_opengl, normal in zip(self.all_c2w.cpu().numpy(), self.normals):
RT_opengl = inv_RT(c2w_opengl)
RT_opencv = RT_opengl2opencv(RT_opengl)
c2w_opencv = inv_RT(RT_opencv)
self.all_poses.append(c2w_opencv)
self.all_w2cs.append(RT_opencv)
normal = normal_opengl2opencv(normal)
normal_world = camNormal2worldNormal(inv_RT(RT_opencv)[:3, :3], normal)
self.all_normals.append(normal)
self.all_normals_world.append(normal_world)
self.directions = torch.stack([self.directions] * len(self.all_images))
self.origins = self.directions
self.all_poses = np.stack(self.all_poses)
self.all_normals = np.stack(self.all_normals)
self.all_normals_world = np.stack(self.all_normals_world)
self.all_w2cs = np.stack(self.all_w2cs)
self.all_c2w = torch.from_numpy(self.all_poses).float().to(self.rank)
self.all_images = self.all_images.to(self.rank)
self.all_fg_masks = self.all_fg_masks.to(self.rank)
self.all_rgb_masks = self.all_fg_masks.to(self.rank)
self.all_normals_world = (
torch.from_numpy(self.all_normals_world).float().to(self.rank)
)
# normals = rearrange(self.all_normals_world, "b h w c -> b c h w")
# normals = normals * 0.5 + 0.5
# # normals = torch.from_numpy(normals)
# save_image(make_grid(normals, nrow=4), "tmp/normals_world.png")
# # exit(0)
# # normals = (normals + 1) / 2.0
# # for debug
# index = [0, 9]
# self.all_poses = self.all_poses[index]
# self.all_c2w = self.all_c2w[index]
# self.all_normals_world = self.all_normals_world[index]
# self.all_w2cs = self.all_w2cs[index]
# self.rgb_masks = self.all_rgb_masks[index]
# self.fg_masks = self.all_fg_masks[index]
# self.all_images = self.all_images[index]
# self.directions = self.directions[index]
# self.origins = self.origins[index]
# images = rearrange(self.all_images, "b h w c -> b c h w")
# normals = rearrange(normals, "b h w c -> b c h w")
# save_image(make_grid(images, nrow=4), "tmp/images.png")
# save_image(make_grid(normals, nrow=4), "tmp/normals.png")
# breakpoint()
# self.normals = self.normals * 2.0 - 1.0
class BlenderDataset(Dataset, BlenderDatasetBase):
def __init__(self, config, split):
self.setup(config, split)
def __len__(self):
return len(self.all_images)
def __getitem__(self, index):
return {"index": index}
class BlenderIterableDataset(IterableDataset, BlenderDatasetBase):
def __init__(self, config, split):
self.setup(config, split)
def __iter__(self):
while True:
yield {}
@datasets.register("videonvs")
class BlenderDataModule(pl.LightningDataModule):
def __init__(self, config):
super().__init__()
self.config = config
def setup(self, stage=None):
if stage in [None, "fit"]:
self.train_dataset = BlenderIterableDataset(
self.config, self.config.train_split
)
if stage in [None, "fit", "validate"]:
self.val_dataset = BlenderDataset(self.config, self.config.val_split)
if stage in [None, "test"]:
self.test_dataset = BlenderDataset(self.config, self.config.test_split)
if stage in [None, "predict"]:
self.predict_dataset = BlenderDataset(self.config, self.config.train_split)
def prepare_data(self):
pass
def general_loader(self, dataset, batch_size):
sampler = None
return DataLoader(
dataset,
num_workers=os.cpu_count(),
batch_size=batch_size,
pin_memory=True,
sampler=sampler,
)
def train_dataloader(self):
return self.general_loader(self.train_dataset, batch_size=1)
def val_dataloader(self):
return self.general_loader(self.val_dataset, batch_size=1)
def test_dataloader(self):
return self.general_loader(self.test_dataset, batch_size=1)
def predict_dataloader(self):
return self.general_loader(self.predict_dataset, batch_size=1)