heheyas
init
cfb7702
import os
import cv2
import torch
import trimesh
import numpy as np
from kiui.op import safe_normalize, dot
from kiui.typing import *
class Mesh:
"""
A torch-native trimesh class, with support for ``ply/obj/glb`` formats.
Note:
This class only supports one mesh with a single texture image (an albedo texture and a metallic-roughness texture).
"""
def __init__(
self,
v: Optional[Tensor] = None,
f: Optional[Tensor] = None,
vn: Optional[Tensor] = None,
fn: Optional[Tensor] = None,
vt: Optional[Tensor] = None,
ft: Optional[Tensor] = None,
vc: Optional[Tensor] = None, # vertex color
albedo: Optional[Tensor] = None,
metallicRoughness: Optional[Tensor] = None,
device: Optional[torch.device] = None,
):
"""Init a mesh directly using all attributes.
Args:
v (Optional[Tensor]): vertices, float [N, 3]. Defaults to None.
f (Optional[Tensor]): faces, int [M, 3]. Defaults to None.
vn (Optional[Tensor]): vertex normals, float [N, 3]. Defaults to None.
fn (Optional[Tensor]): faces for normals, int [M, 3]. Defaults to None.
vt (Optional[Tensor]): vertex uv coordinates, float [N, 2]. Defaults to None.
ft (Optional[Tensor]): faces for uvs, int [M, 3]. Defaults to None.
vc (Optional[Tensor]): vertex colors, float [N, 3]. Defaults to None.
albedo (Optional[Tensor]): albedo texture, float [H, W, 3], RGB format. Defaults to None.
metallicRoughness (Optional[Tensor]): metallic-roughness texture, float [H, W, 3], metallic(Blue) = metallicRoughness[..., 2], roughness(Green) = metallicRoughness[..., 1]. Defaults to None.
device (Optional[torch.device]): torch device. Defaults to None.
"""
self.device = device
self.v = v
self.vn = vn
self.vt = vt
self.f = f
self.fn = fn
self.ft = ft
# will first see if there is vertex color to use
self.vc = vc
# only support a single albedo image
self.albedo = albedo
# pbr extension, metallic(Blue) = metallicRoughness[..., 2], roughness(Green) = metallicRoughness[..., 1]
# ref: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html
self.metallicRoughness = metallicRoughness
self.ori_center = 0
self.ori_scale = 1
@classmethod
def load(cls, path, resize=True, clean=False, renormal=True, retex=False, bound=0.9, front_dir='+z', **kwargs):
"""load mesh from path.
Args:
path (str): path to mesh file, supports ply, obj, glb.
clean (bool, optional): perform mesh cleaning at load (e.g., merge close vertices). Defaults to False.
resize (bool, optional): auto resize the mesh using ``bound`` into [-bound, bound]^3. Defaults to True.
renormal (bool, optional): re-calc the vertex normals. Defaults to True.
retex (bool, optional): re-calc the uv coordinates, will overwrite the existing uv coordinates. Defaults to False.
bound (float, optional): bound to resize. Defaults to 0.9.
front_dir (str, optional): front-view direction of the mesh, should be [+-][xyz][ 123]. Defaults to '+z'.
device (torch.device, optional): torch device. Defaults to None.
Note:
a ``device`` keyword argument can be provided to specify the torch device.
If it's not provided, we will try to use ``'cuda'`` as the device if it's available.
Returns:
Mesh: the loaded Mesh object.
"""
# obj supports face uv
if path.endswith(".obj"):
mesh = cls.load_obj(path, **kwargs)
# trimesh only supports vertex uv, but can load more formats
else:
mesh = cls.load_trimesh(path, **kwargs)
# clean
if clean:
from kiui.mesh_utils import clean_mesh
vertices = mesh.v.detach().cpu().numpy()
triangles = mesh.f.detach().cpu().numpy()
vertices, triangles = clean_mesh(vertices, triangles, remesh=False)
mesh.v = torch.from_numpy(vertices).contiguous().float().to(mesh.device)
mesh.f = torch.from_numpy(triangles).contiguous().int().to(mesh.device)
print(f"[Mesh loading] v: {mesh.v.shape}, f: {mesh.f.shape}")
# auto-normalize
if resize:
mesh.auto_size(bound=bound)
# auto-fix normal
if renormal or mesh.vn is None:
mesh.auto_normal()
print(f"[Mesh loading] vn: {mesh.vn.shape}, fn: {mesh.fn.shape}")
# auto-fix texcoords
if retex or (mesh.albedo is not None and mesh.vt is None):
mesh.auto_uv(cache_path=path)
print(f"[Mesh loading] vt: {mesh.vt.shape}, ft: {mesh.ft.shape}")
# rotate front dir to +z
if front_dir != "+z":
# axis switch
if "-z" in front_dir:
T = torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, -1]], device=mesh.device, dtype=torch.float32)
elif "+x" in front_dir:
T = torch.tensor([[0, 0, 1], [0, 1, 0], [1, 0, 0]], device=mesh.device, dtype=torch.float32)
elif "-x" in front_dir:
T = torch.tensor([[0, 0, -1], [0, 1, 0], [1, 0, 0]], device=mesh.device, dtype=torch.float32)
elif "+y" in front_dir:
T = torch.tensor([[1, 0, 0], [0, 0, 1], [0, 1, 0]], device=mesh.device, dtype=torch.float32)
elif "-y" in front_dir:
T = torch.tensor([[1, 0, 0], [0, 0, -1], [0, 1, 0]], device=mesh.device, dtype=torch.float32)
else:
T = torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]], device=mesh.device, dtype=torch.float32)
# rotation (how many 90 degrees)
if '1' in front_dir:
T @= torch.tensor([[0, -1, 0], [1, 0, 0], [0, 0, 1]], device=mesh.device, dtype=torch.float32)
elif '2' in front_dir:
T @= torch.tensor([[1, 0, 0], [0, -1, 0], [0, 0, 1]], device=mesh.device, dtype=torch.float32)
elif '3' in front_dir:
T @= torch.tensor([[0, 1, 0], [-1, 0, 0], [0, 0, 1]], device=mesh.device, dtype=torch.float32)
mesh.v @= T
mesh.vn @= T
return mesh
# load from obj file
@classmethod
def load_obj(cls, path, albedo_path=None, device=None):
"""load an ``obj`` mesh.
Args:
path (str): path to mesh.
albedo_path (str, optional): path to the albedo texture image, will overwrite the existing texture path if specified in mtl. Defaults to None.
device (torch.device, optional): torch device. Defaults to None.
Note:
We will try to read `mtl` path from `obj`, else we assume the file name is the same as `obj` but with `mtl` extension.
The `usemtl` statement is ignored, and we only use the last material path in `mtl` file.
Returns:
Mesh: the loaded Mesh object.
"""
assert os.path.splitext(path)[-1] == ".obj"
mesh = cls()
# device
if device is None:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
mesh.device = device
# load obj
with open(path, "r") as f:
lines = f.readlines()
def parse_f_v(fv):
# pass in a vertex term of a face, return {v, vt, vn} (-1 if not provided)
# supported forms:
# f v1 v2 v3
# f v1/vt1 v2/vt2 v3/vt3
# f v1/vt1/vn1 v2/vt2/vn2 v3/vt3/vn3
# f v1//vn1 v2//vn2 v3//vn3
xs = [int(x) - 1 if x != "" else -1 for x in fv.split("/")]
xs.extend([-1] * (3 - len(xs)))
return xs[0], xs[1], xs[2]
vertices, texcoords, normals = [], [], []
faces, tfaces, nfaces = [], [], []
mtl_path = None
for line in lines:
split_line = line.split()
# empty line
if len(split_line) == 0:
continue
prefix = split_line[0].lower()
# mtllib
if prefix == "mtllib":
mtl_path = split_line[1]
# usemtl
elif prefix == "usemtl":
pass # ignored
# v/vn/vt
elif prefix == "v":
vertices.append([float(v) for v in split_line[1:]])
elif prefix == "vn":
normals.append([float(v) for v in split_line[1:]])
elif prefix == "vt":
val = [float(v) for v in split_line[1:]]
texcoords.append([val[0], 1.0 - val[1]])
elif prefix == "f":
vs = split_line[1:]
nv = len(vs)
v0, t0, n0 = parse_f_v(vs[0])
for i in range(nv - 2): # triangulate (assume vertices are ordered)
v1, t1, n1 = parse_f_v(vs[i + 1])
v2, t2, n2 = parse_f_v(vs[i + 2])
faces.append([v0, v1, v2])
tfaces.append([t0, t1, t2])
nfaces.append([n0, n1, n2])
mesh.v = torch.tensor(vertices, dtype=torch.float32, device=device)
mesh.vt = (
torch.tensor(texcoords, dtype=torch.float32, device=device)
if len(texcoords) > 0
else None
)
mesh.vn = (
torch.tensor(normals, dtype=torch.float32, device=device)
if len(normals) > 0
else None
)
mesh.f = torch.tensor(faces, dtype=torch.int32, device=device)
mesh.ft = (
torch.tensor(tfaces, dtype=torch.int32, device=device)
if len(texcoords) > 0
else None
)
mesh.fn = (
torch.tensor(nfaces, dtype=torch.int32, device=device)
if len(normals) > 0
else None
)
# see if there is vertex color
use_vertex_color = False
if mesh.v.shape[1] == 6:
use_vertex_color = True
mesh.vc = mesh.v[:, 3:]
mesh.v = mesh.v[:, :3]
print(f"[load_obj] use vertex color: {mesh.vc.shape}")
# try to load texture image
if not use_vertex_color:
# try to retrieve mtl file
mtl_path_candidates = []
if mtl_path is not None:
mtl_path_candidates.append(mtl_path)
mtl_path_candidates.append(os.path.join(os.path.dirname(path), mtl_path))
mtl_path_candidates.append(path.replace(".obj", ".mtl"))
mtl_path = None
for candidate in mtl_path_candidates:
if os.path.exists(candidate):
mtl_path = candidate
break
# if albedo_path is not provided, try retrieve it from mtl
metallic_path = None
roughness_path = None
if mtl_path is not None and albedo_path is None:
with open(mtl_path, "r") as f:
lines = f.readlines()
for line in lines:
split_line = line.split()
# empty line
if len(split_line) == 0:
continue
prefix = split_line[0]
if "map_Kd" in prefix:
# assume relative path!
albedo_path = os.path.join(os.path.dirname(path), split_line[1])
print(f"[load_obj] use texture from: {albedo_path}")
elif "map_Pm" in prefix:
metallic_path = os.path.join(os.path.dirname(path), split_line[1])
elif "map_Pr" in prefix:
roughness_path = os.path.join(os.path.dirname(path), split_line[1])
# still not found albedo_path, or the path doesn't exist
if albedo_path is None or not os.path.exists(albedo_path):
# init an empty texture
print(f"[load_obj] init empty albedo!")
# albedo = np.random.rand(1024, 1024, 3).astype(np.float32)
albedo = np.ones((1024, 1024, 3), dtype=np.float32) * np.array([0.5, 0.5, 0.5]) # default color
else:
albedo = cv2.imread(albedo_path, cv2.IMREAD_UNCHANGED)
albedo = cv2.cvtColor(albedo, cv2.COLOR_BGR2RGB)
albedo = albedo.astype(np.float32) / 255
print(f"[load_obj] load texture: {albedo.shape}")
mesh.albedo = torch.tensor(albedo, dtype=torch.float32, device=device)
# try to load metallic and roughness
if metallic_path is not None and roughness_path is not None:
print(f"[load_obj] load metallicRoughness from: {metallic_path}, {roughness_path}")
metallic = cv2.imread(metallic_path, cv2.IMREAD_UNCHANGED)
metallic = metallic.astype(np.float32) / 255
roughness = cv2.imread(roughness_path, cv2.IMREAD_UNCHANGED)
roughness = roughness.astype(np.float32) / 255
metallicRoughness = np.stack([np.zeros_like(metallic), roughness, metallic], axis=-1)
mesh.metallicRoughness = torch.tensor(metallicRoughness, dtype=torch.float32, device=device).contiguous()
return mesh
@classmethod
def load_trimesh(cls, path, device=None):
"""load a mesh using ``trimesh.load()``.
Can load various formats like ``glb`` and serves as a fallback.
Note:
We will try to merge all meshes if the glb contains more than one,
but **this may cause the texture to lose**, since we only support one texture image!
Args:
path (str): path to the mesh file.
device (torch.device, optional): torch device. Defaults to None.
Returns:
Mesh: the loaded Mesh object.
"""
mesh = cls()
# device
if device is None:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
mesh.device = device
# use trimesh to load ply/glb
_data = trimesh.load(path)
if isinstance(_data, trimesh.Scene):
if len(_data.geometry) == 1:
_mesh = list(_data.geometry.values())[0]
else:
print(f"[load_trimesh] concatenating {len(_data.geometry)} meshes.")
_concat = []
# loop the scene graph and apply transform to each mesh
scene_graph = _data.graph.to_flattened() # dict {name: {transform: 4x4 mat, geometry: str}}
for k, v in scene_graph.items():
name = v['geometry']
if name in _data.geometry and isinstance(_data.geometry[name], trimesh.Trimesh):
transform = v['transform']
_concat.append(_data.geometry[name].apply_transform(transform))
_mesh = trimesh.util.concatenate(_concat)
else:
_mesh = _data
if _mesh.visual.kind == 'vertex':
vertex_colors = _mesh.visual.vertex_colors
vertex_colors = np.array(vertex_colors[..., :3]).astype(np.float32) / 255
mesh.vc = torch.tensor(vertex_colors, dtype=torch.float32, device=device)
print(f"[load_trimesh] use vertex color: {mesh.vc.shape}")
elif _mesh.visual.kind == 'texture':
_material = _mesh.visual.material
if isinstance(_material, trimesh.visual.material.PBRMaterial):
texture = np.array(_material.baseColorTexture).astype(np.float32) / 255
# load metallicRoughness if present
if _material.metallicRoughnessTexture is not None:
metallicRoughness = np.array(_material.metallicRoughnessTexture).astype(np.float32) / 255
mesh.metallicRoughness = torch.tensor(metallicRoughness, dtype=torch.float32, device=device).contiguous()
elif isinstance(_material, trimesh.visual.material.SimpleMaterial):
texture = np.array(_material.to_pbr().baseColorTexture).astype(np.float32) / 255
else:
raise NotImplementedError(f"material type {type(_material)} not supported!")
mesh.albedo = torch.tensor(texture[..., :3], dtype=torch.float32, device=device).contiguous()
print(f"[load_trimesh] load texture: {texture.shape}")
else:
texture = np.ones((1024, 1024, 3), dtype=np.float32) * np.array([0.5, 0.5, 0.5])
mesh.albedo = torch.tensor(texture, dtype=torch.float32, device=device)
print(f"[load_trimesh] failed to load texture.")
vertices = _mesh.vertices
try:
texcoords = _mesh.visual.uv
texcoords[:, 1] = 1 - texcoords[:, 1]
except Exception as e:
texcoords = None
try:
normals = _mesh.vertex_normals
except Exception as e:
normals = None
# trimesh only support vertex uv...
faces = tfaces = nfaces = _mesh.faces
mesh.v = torch.tensor(vertices, dtype=torch.float32, device=device)
mesh.vt = (
torch.tensor(texcoords, dtype=torch.float32, device=device)
if texcoords is not None
else None
)
mesh.vn = (
torch.tensor(normals, dtype=torch.float32, device=device)
if normals is not None
else None
)
mesh.f = torch.tensor(faces, dtype=torch.int32, device=device)
mesh.ft = (
torch.tensor(tfaces, dtype=torch.int32, device=device)
if texcoords is not None
else None
)
mesh.fn = (
torch.tensor(nfaces, dtype=torch.int32, device=device)
if normals is not None
else None
)
return mesh
# sample surface (using trimesh)
def sample_surface(self, count: int):
"""sample points on the surface of the mesh.
Args:
count (int): number of points to sample.
Returns:
torch.Tensor: the sampled points, float [count, 3].
"""
_mesh = trimesh.Trimesh(vertices=self.v.detach().cpu().numpy(), faces=self.f.detach().cpu().numpy())
points, face_idx = trimesh.sample.sample_surface(_mesh, count)
points = torch.from_numpy(points).float().to(self.device)
return points
# aabb
def aabb(self):
"""get the axis-aligned bounding box of the mesh.
Returns:
Tuple[torch.Tensor]: the min xyz and max xyz of the mesh.
"""
return torch.min(self.v, dim=0).values, torch.max(self.v, dim=0).values
# unit size
@torch.no_grad()
def auto_size(self, bound=0.9):
"""auto resize the mesh.
Args:
bound (float, optional): resizing into ``[-bound, bound]^3``. Defaults to 0.9.
"""
vmin, vmax = self.aabb()
self.ori_center = (vmax + vmin) / 2
self.ori_scale = 2 * bound / torch.max(vmax - vmin).item()
self.v = (self.v - self.ori_center) * self.ori_scale
def auto_normal(self):
"""auto calculate the vertex normals.
"""
i0, i1, i2 = self.f[:, 0].long(), self.f[:, 1].long(), self.f[:, 2].long()
v0, v1, v2 = self.v[i0, :], self.v[i1, :], self.v[i2, :]
face_normals = torch.cross(v1 - v0, v2 - v0)
# Splat face normals to vertices
vn = torch.zeros_like(self.v)
vn.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals)
vn.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals)
vn.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals)
# Normalize, replace zero (degenerated) normals with some default value
vn = torch.where(
dot(vn, vn) > 1e-20,
vn,
torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device=vn.device),
)
vn = safe_normalize(vn)
self.vn = vn
self.fn = self.f
def auto_uv(self, cache_path=None, vmap=True):
"""auto calculate the uv coordinates.
Args:
cache_path (str, optional): path to save/load the uv cache as a npz file, this can avoid calculating uv every time when loading the same mesh, which is time-consuming. Defaults to None.
vmap (bool, optional): remap vertices based on uv coordinates, so each v correspond to a unique vt (necessary for formats like gltf).
Usually this will duplicate the vertices on the edge of uv atlas. Defaults to True.
"""
# try to load cache
if cache_path is not None:
cache_path = os.path.splitext(cache_path)[0] + "_uv.npz"
if cache_path is not None and os.path.exists(cache_path):
data = np.load(cache_path)
vt_np, ft_np, vmapping = data["vt"], data["ft"], data["vmapping"]
else:
import xatlas
v_np = self.v.detach().cpu().numpy()
f_np = self.f.detach().int().cpu().numpy()
atlas = xatlas.Atlas()
atlas.add_mesh(v_np, f_np)
chart_options = xatlas.ChartOptions()
# chart_options.max_iterations = 4
atlas.generate(chart_options=chart_options)
vmapping, ft_np, vt_np = atlas[0] # [N], [M, 3], [N, 2]
# save to cache
if cache_path is not None:
np.savez(cache_path, vt=vt_np, ft=ft_np, vmapping=vmapping)
vt = torch.from_numpy(vt_np.astype(np.float32)).to(self.device)
ft = torch.from_numpy(ft_np.astype(np.int32)).to(self.device)
self.vt = vt
self.ft = ft
if vmap:
vmapping = torch.from_numpy(vmapping.astype(np.int64)).long().to(self.device)
self.align_v_to_vt(vmapping)
def align_v_to_vt(self, vmapping=None):
""" remap v/f and vn/fn to vt/ft.
Args:
vmapping (np.ndarray, optional): the mapping relationship from f to ft. Defaults to None.
"""
if vmapping is None:
ft = self.ft.view(-1).long()
f = self.f.view(-1).long()
vmapping = torch.zeros(self.vt.shape[0], dtype=torch.long, device=self.device)
vmapping[ft] = f # scatter, randomly choose one if index is not unique
self.v = self.v[vmapping]
self.f = self.ft
if self.vn is not None:
self.vn = self.vn[vmapping]
self.fn = self.ft
def to(self, device):
"""move all tensor attributes to device.
Args:
device (torch.device): target device.
Returns:
Mesh: self.
"""
self.device = device
for name in ["v", "f", "vn", "fn", "vt", "ft", "albedo", "vc", "metallicRoughness"]:
tensor = getattr(self, name)
if tensor is not None:
setattr(self, name, tensor.to(device))
return self
def write(self, path):
"""write the mesh to a path.
Args:
path (str): path to write, supports ply, obj and glb.
"""
if path.endswith(".ply"):
self.write_ply(path)
elif path.endswith(".obj"):
self.write_obj(path)
elif path.endswith(".glb") or path.endswith(".gltf"):
self.write_glb(path)
else:
raise NotImplementedError(f"format {path} not supported!")
def write_ply(self, path):
"""write the mesh in ply format. Only for geometry!
Args:
path (str): path to write.
"""
if self.albedo is not None:
print(f'[WARN] ply format does not support exporting texture, will ignore!')
v_np = self.v.detach().cpu().numpy()
f_np = self.f.detach().cpu().numpy()
_mesh = trimesh.Trimesh(vertices=v_np, faces=f_np)
_mesh.export(path)
def write_glb(self, path):
"""write the mesh in glb/gltf format.
This will create a scene with a single mesh.
Args:
path (str): path to write.
"""
# assert self.v.shape[0] == self.vn.shape[0] and self.v.shape[0] == self.vt.shape[0]
if self.vt is not None and self.v.shape[0] != self.vt.shape[0]:
self.align_v_to_vt()
import pygltflib
f_np = self.f.detach().cpu().numpy().astype(np.uint32)
f_np_blob = f_np.flatten().tobytes()
v_np = self.v.detach().cpu().numpy().astype(np.float32)
v_np_blob = v_np.tobytes()
blob = f_np_blob + v_np_blob
byteOffset = len(blob)
# base mesh
gltf = pygltflib.GLTF2(
scene=0,
scenes=[pygltflib.Scene(nodes=[0])],
nodes=[pygltflib.Node(mesh=0)],
meshes=[pygltflib.Mesh(primitives=[pygltflib.Primitive(
# indices to accessors (0 is triangles)
attributes=pygltflib.Attributes(
POSITION=1,
),
indices=0,
)])],
buffers=[
pygltflib.Buffer(byteLength=len(f_np_blob) + len(v_np_blob))
],
# buffer view (based on dtype)
bufferViews=[
# triangles; as flatten (element) array
pygltflib.BufferView(
buffer=0,
byteLength=len(f_np_blob),
target=pygltflib.ELEMENT_ARRAY_BUFFER, # GL_ELEMENT_ARRAY_BUFFER (34963)
),
# positions; as vec3 array
pygltflib.BufferView(
buffer=0,
byteOffset=len(f_np_blob),
byteLength=len(v_np_blob),
byteStride=12, # vec3
target=pygltflib.ARRAY_BUFFER, # GL_ARRAY_BUFFER (34962)
),
],
accessors=[
# 0 = triangles
pygltflib.Accessor(
bufferView=0,
componentType=pygltflib.UNSIGNED_INT, # GL_UNSIGNED_INT (5125)
count=f_np.size,
type=pygltflib.SCALAR,
max=[int(f_np.max())],
min=[int(f_np.min())],
),
# 1 = positions
pygltflib.Accessor(
bufferView=1,
componentType=pygltflib.FLOAT, # GL_FLOAT (5126)
count=len(v_np),
type=pygltflib.VEC3,
max=v_np.max(axis=0).tolist(),
min=v_np.min(axis=0).tolist(),
),
],
)
# append texture info
if self.vt is not None:
vt_np = self.vt.detach().cpu().numpy().astype(np.float32)
vt_np_blob = vt_np.tobytes()
albedo = self.albedo.detach().cpu().numpy()
albedo = (albedo * 255).astype(np.uint8)
albedo = cv2.cvtColor(albedo, cv2.COLOR_RGB2BGR)
albedo_blob = cv2.imencode('.png', albedo)[1].tobytes()
# update primitive
gltf.meshes[0].primitives[0].attributes.TEXCOORD_0 = 2
gltf.meshes[0].primitives[0].material = 0
# update materials
gltf.materials.append(pygltflib.Material(
pbrMetallicRoughness=pygltflib.PbrMetallicRoughness(
baseColorTexture=pygltflib.TextureInfo(index=0, texCoord=0),
metallicFactor=0.0,
roughnessFactor=1.0,
),
alphaMode=pygltflib.OPAQUE,
alphaCutoff=None,
doubleSided=True,
))
gltf.textures.append(pygltflib.Texture(sampler=0, source=0))
gltf.samplers.append(pygltflib.Sampler(magFilter=pygltflib.LINEAR, minFilter=pygltflib.LINEAR_MIPMAP_LINEAR, wrapS=pygltflib.REPEAT, wrapT=pygltflib.REPEAT))
gltf.images.append(pygltflib.Image(bufferView=3, mimeType="image/png"))
# update buffers
gltf.bufferViews.append(
# index = 2, texcoords; as vec2 array
pygltflib.BufferView(
buffer=0,
byteOffset=byteOffset,
byteLength=len(vt_np_blob),
byteStride=8, # vec2
target=pygltflib.ARRAY_BUFFER,
)
)
gltf.accessors.append(
# 2 = texcoords
pygltflib.Accessor(
bufferView=2,
componentType=pygltflib.FLOAT,
count=len(vt_np),
type=pygltflib.VEC2,
max=vt_np.max(axis=0).tolist(),
min=vt_np.min(axis=0).tolist(),
)
)
blob += vt_np_blob
byteOffset += len(vt_np_blob)
gltf.bufferViews.append(
# index = 3, albedo texture; as none target
pygltflib.BufferView(
buffer=0,
byteOffset=byteOffset,
byteLength=len(albedo_blob),
)
)
blob += albedo_blob
byteOffset += len(albedo_blob)
gltf.buffers[0].byteLength = byteOffset
# append metllic roughness
if self.metallicRoughness is not None:
metallicRoughness = self.metallicRoughness.detach().cpu().numpy()
metallicRoughness = (metallicRoughness * 255).astype(np.uint8)
metallicRoughness = cv2.cvtColor(metallicRoughness, cv2.COLOR_RGB2BGR)
metallicRoughness_blob = cv2.imencode('.png', metallicRoughness)[1].tobytes()
# update texture definition
gltf.materials[0].pbrMetallicRoughness.metallicFactor = 1.0
gltf.materials[0].pbrMetallicRoughness.roughnessFactor = 1.0
gltf.materials[0].pbrMetallicRoughness.metallicRoughnessTexture = pygltflib.TextureInfo(index=1, texCoord=0)
gltf.textures.append(pygltflib.Texture(sampler=1, source=1))
gltf.samplers.append(pygltflib.Sampler(magFilter=pygltflib.LINEAR, minFilter=pygltflib.LINEAR_MIPMAP_LINEAR, wrapS=pygltflib.REPEAT, wrapT=pygltflib.REPEAT))
gltf.images.append(pygltflib.Image(bufferView=4, mimeType="image/png"))
# update buffers
gltf.bufferViews.append(
# index = 4, metallicRoughness texture; as none target
pygltflib.BufferView(
buffer=0,
byteOffset=byteOffset,
byteLength=len(metallicRoughness_blob),
)
)
blob += metallicRoughness_blob
byteOffset += len(metallicRoughness_blob)
gltf.buffers[0].byteLength = byteOffset
# set actual data
gltf.set_binary_blob(blob)
# glb = b"".join(gltf.save_to_bytes())
gltf.save(path)
def write_obj(self, path):
"""write the mesh in obj format. Will also write the texture and mtl files.
Args:
path (str): path to write.
"""
mtl_path = path.replace(".obj", ".mtl")
albedo_path = path.replace(".obj", "_albedo.png")
metallic_path = path.replace(".obj", "_metallic.png")
roughness_path = path.replace(".obj", "_roughness.png")
v_np = self.v.detach().cpu().numpy()
vt_np = self.vt.detach().cpu().numpy() if self.vt is not None else None
vn_np = self.vn.detach().cpu().numpy() if self.vn is not None else None
f_np = self.f.detach().cpu().numpy()
ft_np = self.ft.detach().cpu().numpy() if self.ft is not None else None
fn_np = self.fn.detach().cpu().numpy() if self.fn is not None else None
with open(path, "w") as fp:
fp.write(f"mtllib {os.path.basename(mtl_path)} \n")
for v in v_np:
fp.write(f"v {v[0]} {v[1]} {v[2]} \n")
if vt_np is not None:
for v in vt_np:
fp.write(f"vt {v[0]} {1 - v[1]} \n")
if vn_np is not None:
for v in vn_np:
fp.write(f"vn {v[0]} {v[1]} {v[2]} \n")
fp.write(f"usemtl defaultMat \n")
for i in range(len(f_np)):
fp.write(
f'f {f_np[i, 0] + 1}/{ft_np[i, 0] + 1 if ft_np is not None else ""}/{fn_np[i, 0] + 1 if fn_np is not None else ""} \
{f_np[i, 1] + 1}/{ft_np[i, 1] + 1 if ft_np is not None else ""}/{fn_np[i, 1] + 1 if fn_np is not None else ""} \
{f_np[i, 2] + 1}/{ft_np[i, 2] + 1 if ft_np is not None else ""}/{fn_np[i, 2] + 1 if fn_np is not None else ""} \n'
)
with open(mtl_path, "w") as fp:
fp.write(f"newmtl defaultMat \n")
fp.write(f"Ka 1 1 1 \n")
fp.write(f"Kd 1 1 1 \n")
fp.write(f"Ks 0 0 0 \n")
fp.write(f"Tr 1 \n")
fp.write(f"illum 1 \n")
fp.write(f"Ns 0 \n")
if self.albedo is not None:
fp.write(f"map_Kd {os.path.basename(albedo_path)} \n")
if self.metallicRoughness is not None:
# ref: https://en.wikipedia.org/wiki/Wavefront_.obj_file#Physically-based_Rendering
fp.write(f"map_Pm {os.path.basename(metallic_path)} \n")
fp.write(f"map_Pr {os.path.basename(roughness_path)} \n")
if self.albedo is not None:
albedo = self.albedo.detach().cpu().numpy()
albedo = (albedo * 255).astype(np.uint8)
cv2.imwrite(albedo_path, cv2.cvtColor(albedo, cv2.COLOR_RGB2BGR))
if self.metallicRoughness is not None:
metallicRoughness = self.metallicRoughness.detach().cpu().numpy()
metallicRoughness = (metallicRoughness * 255).astype(np.uint8)
cv2.imwrite(metallic_path, metallicRoughness[..., 2])
cv2.imwrite(roughness_path, metallicRoughness[..., 1])