heheyas
init
cfb7702
import math
import numpy as np
import torch
import torch.nn as nn
import tinycudann as tcnn
from pytorch_lightning.utilities.rank_zero import rank_zero_debug, rank_zero_info
from utils.misc import config_to_primitive, get_rank
from models.utils import get_activation
from systems.utils import update_module_step
class VanillaFrequency(nn.Module):
def __init__(self, in_channels, config):
super().__init__()
self.N_freqs = config['n_frequencies']
self.in_channels, self.n_input_dims = in_channels, in_channels
self.funcs = [torch.sin, torch.cos]
self.freq_bands = 2**torch.linspace(0, self.N_freqs-1, self.N_freqs)
self.n_output_dims = self.in_channels * (len(self.funcs) * self.N_freqs)
self.n_masking_step = config.get('n_masking_step', 0)
self.update_step(None, None) # mask should be updated at the beginning each step
def forward(self, x):
out = []
for freq, mask in zip(self.freq_bands, self.mask):
for func in self.funcs:
out += [func(freq*x) * mask]
return torch.cat(out, -1)
def update_step(self, epoch, global_step):
if self.n_masking_step <= 0 or global_step is None:
self.mask = torch.ones(self.N_freqs, dtype=torch.float32)
else:
self.mask = (1. - torch.cos(math.pi * (global_step / self.n_masking_step * self.N_freqs - torch.arange(0, self.N_freqs)).clamp(0, 1))) / 2.
rank_zero_debug(f'Update mask: {global_step}/{self.n_masking_step} {self.mask}')
class ProgressiveBandHashGrid(nn.Module):
def __init__(self, in_channels, config):
super().__init__()
self.n_input_dims = in_channels
encoding_config = config.copy()
encoding_config['otype'] = 'HashGrid'
with torch.cuda.device(get_rank()):
self.encoding = tcnn.Encoding(in_channels, encoding_config)
self.n_output_dims = self.encoding.n_output_dims
self.n_level = config['n_levels']
self.n_features_per_level = config['n_features_per_level']
self.start_level, self.start_step, self.update_steps = config['start_level'], config['start_step'], config['update_steps']
self.current_level = self.start_level
self.mask = torch.zeros(self.n_level * self.n_features_per_level, dtype=torch.float32, device=get_rank())
def forward(self, x):
enc = self.encoding(x)
enc = enc * self.mask
return enc
def update_step(self, epoch, global_step):
current_level = min(self.start_level + max(global_step - self.start_step, 0) // self.update_steps, self.n_level)
if current_level > self.current_level:
rank_zero_info(f'Update grid level to {current_level}')
self.current_level = current_level
self.mask[:self.current_level * self.n_features_per_level] = 1.
class CompositeEncoding(nn.Module):
def __init__(self, encoding, include_xyz=False, xyz_scale=1., xyz_offset=0.):
super(CompositeEncoding, self).__init__()
self.encoding = encoding
self.include_xyz, self.xyz_scale, self.xyz_offset = include_xyz, xyz_scale, xyz_offset
self.n_output_dims = int(self.include_xyz) * self.encoding.n_input_dims + self.encoding.n_output_dims
def forward(self, x, *args):
return self.encoding(x, *args) if not self.include_xyz else torch.cat([x * self.xyz_scale + self.xyz_offset, self.encoding(x, *args)], dim=-1)
def update_step(self, epoch, global_step):
update_module_step(self.encoding, epoch, global_step)
def get_encoding(n_input_dims, config):
# input suppose to be range [0, 1]
if config.otype == 'VanillaFrequency':
encoding = VanillaFrequency(n_input_dims, config_to_primitive(config))
elif config.otype == 'ProgressiveBandHashGrid':
encoding = ProgressiveBandHashGrid(n_input_dims, config_to_primitive(config))
else:
with torch.cuda.device(get_rank()):
encoding = tcnn.Encoding(n_input_dims, config_to_primitive(config))
encoding = CompositeEncoding(encoding, include_xyz=config.get('include_xyz', False), xyz_scale=2., xyz_offset=-1.)
return encoding
class VanillaMLP(nn.Module):
def __init__(self, dim_in, dim_out, config):
super().__init__()
self.n_neurons, self.n_hidden_layers = config['n_neurons'], config['n_hidden_layers']
self.sphere_init, self.weight_norm = config.get('sphere_init', False), config.get('weight_norm', False)
self.sphere_init_radius = config.get('sphere_init_radius', 0.5)
self.layers = [self.make_linear(dim_in, self.n_neurons, is_first=True, is_last=False), self.make_activation()]
for i in range(self.n_hidden_layers - 1):
self.layers += [self.make_linear(self.n_neurons, self.n_neurons, is_first=False, is_last=False), self.make_activation()]
self.layers += [self.make_linear(self.n_neurons, dim_out, is_first=False, is_last=True)]
self.layers = nn.Sequential(*self.layers)
self.output_activation = get_activation(config['output_activation'])
@torch.cuda.amp.autocast(False)
def forward(self, x):
x = self.layers(x.float())
x = self.output_activation(x)
return x
def make_linear(self, dim_in, dim_out, is_first, is_last):
layer = nn.Linear(dim_in, dim_out, bias=True) # network without bias will degrade quality
if self.sphere_init:
if is_last:
torch.nn.init.constant_(layer.bias, -self.sphere_init_radius)
torch.nn.init.normal_(layer.weight, mean=math.sqrt(math.pi) / math.sqrt(dim_in), std=0.0001)
elif is_first:
torch.nn.init.constant_(layer.bias, 0.0)
torch.nn.init.constant_(layer.weight[:, 3:], 0.0)
torch.nn.init.normal_(layer.weight[:, :3], 0.0, math.sqrt(2) / math.sqrt(dim_out))
else:
torch.nn.init.constant_(layer.bias, 0.0)
torch.nn.init.normal_(layer.weight, 0.0, math.sqrt(2) / math.sqrt(dim_out))
else:
torch.nn.init.constant_(layer.bias, 0.0)
torch.nn.init.kaiming_uniform_(layer.weight, nonlinearity='relu')
if self.weight_norm:
layer = nn.utils.weight_norm(layer)
return layer
def make_activation(self):
if self.sphere_init:
return nn.Softplus(beta=100)
else:
return nn.ReLU(inplace=True)
def sphere_init_tcnn_network(n_input_dims, n_output_dims, config, network):
rank_zero_debug('Initialize tcnn MLP to approximately represent a sphere.')
"""
from https://github.com/NVlabs/tiny-cuda-nn/issues/96
It's the weight matrices of each layer laid out in row-major order and then concatenated.
Notably: inputs and output dimensions are padded to multiples of 8 (CutlassMLP) or 16 (FullyFusedMLP).
The padded input dimensions get a constant value of 1.0,
whereas the padded output dimensions are simply ignored,
so the weights pertaining to those can have any value.
"""
padto = 16 if config.otype == 'FullyFusedMLP' else 8
n_input_dims = n_input_dims + (padto - n_input_dims % padto) % padto
n_output_dims = n_output_dims + (padto - n_output_dims % padto) % padto
data = list(network.parameters())[0].data
assert data.shape[0] == (n_input_dims + n_output_dims) * config.n_neurons + (config.n_hidden_layers - 1) * config.n_neurons**2
new_data = []
# first layer
weight = torch.zeros((config.n_neurons, n_input_dims)).to(data)
torch.nn.init.constant_(weight[:, 3:], 0.0)
torch.nn.init.normal_(weight[:, :3], 0.0, math.sqrt(2) / math.sqrt(config.n_neurons))
new_data.append(weight.flatten())
# hidden layers
for i in range(config.n_hidden_layers - 1):
weight = torch.zeros((config.n_neurons, config.n_neurons)).to(data)
torch.nn.init.normal_(weight, 0.0, math.sqrt(2) / math.sqrt(config.n_neurons))
new_data.append(weight.flatten())
# last layer
weight = torch.zeros((n_output_dims, config.n_neurons)).to(data)
torch.nn.init.normal_(weight, mean=math.sqrt(math.pi) / math.sqrt(config.n_neurons), std=0.0001)
new_data.append(weight.flatten())
new_data = torch.cat(new_data)
data.copy_(new_data)
def get_mlp(n_input_dims, n_output_dims, config):
if config.otype == 'VanillaMLP':
network = VanillaMLP(n_input_dims, n_output_dims, config_to_primitive(config))
else:
with torch.cuda.device(get_rank()):
network = tcnn.Network(n_input_dims, n_output_dims, config_to_primitive(config))
if config.get('sphere_init', False):
sphere_init_tcnn_network(n_input_dims, n_output_dims, config, network)
return network
class EncodingWithNetwork(nn.Module):
def __init__(self, encoding, network):
super().__init__()
self.encoding, self.network = encoding, network
def forward(self, x):
return self.network(self.encoding(x))
def update_step(self, epoch, global_step):
update_module_step(self.encoding, epoch, global_step)
update_module_step(self.network, epoch, global_step)
def get_encoding_with_network(n_input_dims, n_output_dims, encoding_config, network_config):
# input suppose to be range [0, 1]
if encoding_config.otype in ['VanillaFrequency', 'ProgressiveBandHashGrid'] \
or network_config.otype in ['VanillaMLP']:
encoding = get_encoding(n_input_dims, encoding_config)
network = get_mlp(encoding.n_output_dims, n_output_dims, network_config)
encoding_with_network = EncodingWithNetwork(encoding, network)
else:
with torch.cuda.device(get_rank()):
encoding_with_network = tcnn.NetworkWithInputEncoding(
n_input_dims=n_input_dims,
n_output_dims=n_output_dims,
encoding_config=config_to_primitive(encoding_config),
network_config=config_to_primitive(network_config)
)
return encoding_with_network