awacke1 commited on
Commit
3a10454
·
1 Parent(s): e1f2ddc

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -0
app.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import altair as alt
3
+ import torch
4
+ from transformers import AlbertTokenizer, AlbertForSequenceClassification
5
+
6
+ # Load pre-trained model and tokenizer
7
+ model_name = "albert-base-v2"
8
+ tokenizer = AlbertTokenizer.from_pretrained(model_name)
9
+ model = AlbertForSequenceClassification.from_pretrained(model_name)
10
+
11
+ # Define function to classify input text
12
+ def classify_text(text):
13
+ inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
14
+ outputs = model(**inputs)
15
+ logits = outputs.logits.detach().numpy()[0]
16
+ probabilities = torch.softmax(torch.tensor(logits), dim=0).tolist()
17
+ return probabilities
18
+
19
+ # Set up Streamlit app
20
+ st.title("ALBERT Text Classification App")
21
+
22
+ # Create input box for user to enter text
23
+ text_input = st.text_area("Enter text to classify", height=200)
24
+
25
+ # Classify input text and display results
26
+ if st.button("Classify"):
27
+ if text_input:
28
+ probabilities = classify_text(text_input)
29
+ df = pd.DataFrame({
30
+ 'Label': ['Negative', 'Positive'],
31
+ 'Probability': probabilities
32
+ })
33
+ chart = alt.Chart(df).mark_bar().encode(
34
+ x='Probability',
35
+ y=alt.Y('Label', sort=['Negative', 'Positive'])
36
+ )
37
+ st.write(chart)
38
+ else:
39
+ st.write("Please enter some text to classify.")